The high-grade pulmonary neuroendocrine tumors, small cell lung cancer (SCLC) and large cell neuroendocrine carcinoma (LCNEC), remain among the most deadly malignancies. Therapies that effectively target and kill tumor-initiating cells (TICs) in these cancers should translate to improved patient survival. Patient-derived xenograft (PDX) tumors serve as excellent models to study tumor biology and characterize TICs. Increased expression of delta-like 3 (DLL3) was discovered in SCLC and LCNEC PDX tumors and confirmed in primary SCLC and LCNEC tumors. DLL3 protein is expressed on the surface of tumor cells but not in normal adult tissues. A DLL3-targeted antibody-drug conjugate (ADC), SC16LD6.5, comprised of a humanized anti-DLL3 monoclonal antibody conjugated to a DNA-damaging pyrrolobenzodiazepine (PBD) dimer toxin, induced durable tumor regression in vivo across multiple PDX models. Serial transplantation experiments executed with limiting dilutions of cells provided functional evidence confirming that the lack of tumor recurrence after SC16LD6.5 exposure resulted from effective targeting of DLL3-expressing TICs. In vivo efficacy correlated with DLL3 expression, and responses were observed in PDX models initiated from patients with both limited and extensive-stage disease and were independent of their sensitivity to standard-of-care chemotherapy regimens. SC16LD6.5 effectively targets and eradicates DLL3-expressing TICs in SCLC and LCNEC PDX tumors and is a promising first-in-class ADC for the treatment of high-grade pulmonary neuroendocrine tumors.
Cells latently infected with HIV represent a currently insurmountable barrier to viral eradication in infected patients. Using the J‐Lat human T‐cell model of HIV latency, we have investigated the role of host factor binding to the κB enhancer elements of the HIV long terminal repeat (LTR) in the maintenance of viral latency. We show that NF‐κB p50–HDAC1 complexes constitutively bind the latent HIV LTR and induce histone deacetylation and repressive changes in chromatin structure of the HIV LTR, changes that impair recruitment of RNA polymerase II and transcriptional initiation. Knockdown of p50 expression with specific small hairpin RNAs reduces HDAC1 binding to the latent HIV LTR and induces RNA polymerase II recruitment. Similarly, inhibition of histone deacetylase (HDAC) activity with trichostatin A promotes binding of RNA polymerase II to the latent HIV LTR. This bound polymerase complex, however, remains non‐processive, generating only short viral transcripts. Synthesis of full‐length viral transcripts can be rescued under these conditions by expression of Tat. The combination of HDAC inhibitors and Tat merits consideration as a new strategy for purging latent HIV proviruses from their cellular reservoirs.
The NF-B/Rel family of transcription factors plays a key role in regulating inflammatory and immune responses and other programs of cell growth and survival. The five known mammalian Rel genes encode seven Rel-related proteins: RelA/p65; p105 and its processing product, p50; p100 and its processing product, p52; c-Rel; and RelB. Each contains an N-terminal Rel homology domain (ϳ300 amino acids) that mediates DNA binding, dimerization, and interaction with the IB family of NF-B/Rel inhibitors. RelA, c-RelA, and RelB contain C-terminal transactivation domains, but p50 and p52 do not. Each NF-B/Rel protein forms different homo-or heterodimers with other members of the family, which may contribute to the activation of specific target genes (1, 5).The prototypical NF-B complex is a p50/RelA heterodimer. NF-B is largely sequestered in the cytoplasm through its association with an IB inhibitor. Nuclear NF-B expression is induced by various stimuli, including proinflammatory cytokines, growth factors, DNA-damaging agents, and viral proteins (13). The activation of NF-B can be divided into two phases. The first phase involves cytoplasmic events culminating in the activation of the IB kinases (IKK1 and IKK2). These kinases promote N-terminal phosphorylation of serines 32 and 36 in IB␣, leading to its polyubiquitylation and proteasome-mediated degradation. The liberated NF-B complex rapidly translocates to the nucleus, ending the first phase (13). The second phase occurs primarily in the nucleus and involves posttranslational modification of the NF-B transcription factor complex or relevant histones surrounding NF-B target genes (5). These modifications determine both the strength and duration of the NF-B-mediated transcriptional response (5).One of the nuclear events is the reversible acetylation of RelA (4). Endogenous RelA is acetylated in a stimulus-coupled manner after activation of cells with tumor necrosis factor alpha (TNF-␣), phorbol myristate acetate, or other stimuli at multiple sites, including lysines 122, 123, 218, 221, and 310 (4, 17). The acetyltransferases p300 and CBP appear to play a major role in the in vivo acetylation of RelA (6,17). Sitespecific acetylation of RelA regulates discrete biological actions of the NF-B complex (5, 6). For example, acetylation of lysine 221 by p300/CBP increases the DNA binding affinity of RelA for the B enhancer and, together with acetylation of lysine 218, impairs assembly of RelA with newly synthesized IB␣, which shuttles in and out of the nucleus. Acetylation of lysine 310 does not modulate DNA binding or IB␣ assembly but markedly enhances the transcriptional activity of NF-B. Deacetylation of lysine 310 by histone deacetylase 3 (HDAC3) or SIRT1 inhibits the transcriptional activity of RelA and augments cellular apoptosis in response to 32). While it is clear that signal-coupled acetylation of RelA participates in the nuclear regulation of NF-B action (4, 17), many unanswered questions remain. Chief among these is how the acetylation of RelA is regulated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.