We show that active neutrino masses and a keV-GeV mass sterile neutrino dark matter candidate can result from a modified, low energy seesaw mechanism if right-handed neutrinos are charged under a new symmetry broken by a scalar field vacuum expectation value at the PeV scale. The dark matter relic abundance can be obtained through active-sterile oscillation, freeze-in through the decay of the heavy scalar, or freeze-in via non-renormalizable interactions at high temperatures. The low energy effective theory maps onto the widely studied νMSM framework.
MOTIVATION
Recent measurements of PeV energy neutrinos at IceCube and a 3.5 keV X-ray line in the spectra of several galaxies are both tantalizing signatures of new physics. This paper shows that one or both of these observations can be explained within an extended supersymmetric neutrino sector. Obtaining light active neutrino masses as well as phenomenologically interesting (keV-GeV) sterile neutrino masses without any unnaturally small parameters hints at a new symmetry in the neutrino sector that is broken at the PeV scale, presumably tied to supersymmetry breaking. The same symmetry and structure can sufficiently stabilize an additional PeV particle, produce its abundance through the freeze-in mechanism, and lead to decays that can give the energetic neutrinos observed by IceCube.The lightest sterile neutrino, if at 7 keV, is a non-resonantly produced fraction of dark matter, and can account for the 3.5 keV X-ray line. The two signals could therefore be the first probes of an extended supersymmetric neutrino sector.
Scattering amplitudes in 4d N = 4 super Yang-Mills theory (SYM) can be described by Grassmannian contour integrals whose form depends on whether the external data is encoded in momentum space, twistor space, or momentum twistor space. After a pedagogical review, we present a new, streamlined proof of the equivalence of the three integral formulations. A similar strategy allows us to derive a new Grassmannian integral for 3d N = 6 ABJM theory amplitudes in momentum twistor space: it is a contour integral in an orthogonal Grassmannian with the novel property that the internal metric depends on the external data. The result can be viewed as a central step towards developing an amplituhedron formulation for ABJM amplitudes. Various properties of Grassmannian integrals are examined, including boundary properties, pole structure, and a homological interpretation of the global residue theorems for N = 4 SYM.
We investigate observable cosmological aspects of sterile neutrino dark matter produced via the freeze-in mechanism. The study is performed in a framework that admits many cosmologically interesting variations: high temperature production via annihilation processes from higher dimensional operators or low temperature production from decays of a scalar, with the decaying scalar in or out of equilibrium with the thermal bath, in supersymmetric or non-supersymmetric setups, thus allowing us to both extract generic properties and highlight features unique to particular variations. We find that while such sterile neutrinos are generally compatible with all cosmological constraints, interesting scenarios can arise where dark matter is cold, warm, or hot, has nontrivial momentum distributions, or provides contributions to the effective number of relativistic degrees of freedom N eff during Big Bang nucleosynthesis large enough to be probed by future measurements.1 arXiv:1609.06739v2 [hep-ph]
Photoinduced thiol-catalyzed hydrogen abstraction and ß-scission of acyclic benzylidene acetals is demostrated as a new route to “command-destruct” polymer thermosets. Using this approach, we show that poly(thioether acetal) networks synthesized...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.