Strong latitudinal patterns in leaf form are well documented in floristic comparisons and palaeobotanical studies. However, there is little agreement about their functional significance; in fact, it is still unknown to what degree these patterns were generated by repeated evolutionary adaptation. We analysed leaf form in the woody angiosperm clade Viburnum (Adoxaceae) and document evolutionarily correlated shifts in leafing habit, leaf margin morphology, leaf shape and climate. Multiple independent shifts between tropical and temperate forest habitats have repeatedly been accompanied by a change between evergreen, elliptical leaves with entire margins and deciduous, more rounded leaves with toothed or lobed margins. These consistent shifts in Viburnum support repeated evolutionary adaptation as a major determinant of the global correlation between leaf form and mean annual temperature. Our results provide a new theoretical grounding for the inference of past climates using fossil leaf assemblages.
Polar bodies are as diverse as the organisms that produce them. Although in many animals these cells often die following meiotic maturation of the oocyte, in other organisms they are an essential and diverse part of embryonic development. Here we highlight some of this diversity and summarize the evolutionary basis for their utility.
Few studies have critically evaluated how morphological variation within individual organisms corresponds to variation within and among species. Subindividual variation in plants facilitates such studies because their indeterminate modular growth generates multiple serially homologous structures along growing axes. Focusing on leaf form, we evaluate how subindividual trait variation relates to leaf evolution across Viburnum, a clade of woody angiosperms. In Viburnum we infer multiple independent origins of wide/lobed leaves with toothed margins from ancestors with elliptical, smooth-margined leaves. We document leaf variation along the branches of individual plants of 28 species and among populations across the wide range of Viburnum dentatum. We conclude that when novel leaf forms evolved in Viburnum, they were intercalated at the beginning of the seasonal leaf sequence, which then generated a repeated spectrum of leaf forms along each branch (seasonal heteroblasty). We hypothesize that the existence of such a spectrum then facilitated additional evolutionary shifts, including reversions to more ancestral forms. We argue that the recurrent production of alternative phenotypes provides opportunities to canalize the production of particular forms and that this phenomenon has played an important role in generating macroscale patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.