Precise and scalable defect engineering of 2D nanomaterials is acutely sought-after in contemporary materials science. Here we present defect engineering in monolayer graphene and molybdenum disulfide (MoS2) by irradiation with noble gas ions at 30 keV. Two ion species of different masses were used in a gas field ion source microscope: helium (He + ) and neon (Ne + ). A detailed study of the introduced defect sizes and resulting inter-defect distance with escalating ion dose was performed using Raman spectroscopy. Expanding on existing models, we found that the average defect size is considerably smaller for supported than freestanding graphene and that the rate of defect production is larger. We conclude that secondary atoms from the substrate play a significant role in defect production, creating smaller defects relative to those created by the primary ion beam. Furthermore, a similar model was also applied to supported MoS2, another promising member of the 2D material family. Defect yields for both ions were obtained for MoS2, demonstrating their different interaction with the material and facilitating comparison with other irradiation conditions in the literature.
The shock-capturing, non-hydrostatic, three-dimensional (3D) finite-volume model NHWAVE was originally developed to simulate wave propagation and landslide-generated tsunamis in finite water depth (Ma et al., 2012). The model is based on the incompressible Navier-Stokes equations, in which the z-axis is transformed to a σ-coordinate that tracks the bed and surface. As part of an ongoing effort to simulate waves in polar marginal ice zones (MIZs), the model has now been adapted to allow objects of arbitrary shape and roughness to float on or near its water surface. The shape of the underside of each floating object is mapped onto an upper σ-level slightly below the surface. In areas without floating objects, this σ-level continues to track the surface and bed as before. Along the sides of each floating object, an immersed boundary method is used to interpolate the effects of the object onto the neighboring fluid volume. Provided with the object's shape, location, and velocity over time, NHWAVE determines the fluid fluxes and pressure variations from the corresponding accelerations at neighboring cell boundaries. The system was validated by comparison with analytical solutions and a VOF model for a 2D floating box and with laboratory measurements of wave generation by a vertically oscillating sphere. A steep wave simulation illustrated the high efficiency of NHWAVE relative to a VOF model. In a more realistic MIZ simulation, the adapted model produced
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.