Ionic liquids have drawn notable attention for their unique solvent properties and use in applications such as batteries and chemical separations. While many ionic liquids are water-soluble, there are numerous examples of ionic liquids that are sufficiently hydrophobic to remain phase separated from water. However, relatively little is known about the stability and properties of ionic liquid-in-water emulsions. Here, we survey a series of ionic liquid-inwater emulsions stabilized by a range of ionic and nonionic molecular surfactants and polymers. To assess droplet stability and dynamics, we characterize the ionic liquid−surfactant interfacial tension, describe qualitative coarsening rates, and quantify droplet solubilization rate. In some instances, we observe unexpected spontaneous formation of complex double and triple emulsions. Our observations highlight approaches for ionic liquid emulsion formulation and provide insight into how to address challenges surrounding stabilization of ionic liquid-in-water droplets with molecular surfactants.
Ionic liquids have drawn notable attention for their unique solvent properties and use in applications like batteries and chemical separations. While many ionic liquids are water soluble, there are numerous examples of ionic liquids that are sufficiently hydrophobic to remain phase separated from water. However, relatively little is known about the stability and properties of ionic liquid-in-water emulsions. Here, we survey a series of ionic liquid-in-water emulsions stabilized by a range of ionic and nonionic molecular surfactants and polymers. To assess droplet stability and dynamics, we characterize the ionic liquid-surfactant interfacial tension, describe qualitative coarsening rates, and quantify droplet solubilization rate. In some instances, we observe unexpected spontaneous formation of complex double and triple emulsions. Our observations highlight approaches for ionic liquid emulsion formulation and provide insight into how to address challenges surrounding stabilization of ionic liquid-in-water droplets with molecular surfactants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.