This paper presents a new geometry-based method to determine if a cable-driven robot operating in a d-degree-of-freedom workspace (2 ≤ d ≤ 6) with n ≥ d cables can generate a given set of wrenches in a given pose, considering acceptable minimum and maximum tensions in the cables.
This paper presents a new geometry-based method to determine if a cable-driven robot operating in a d-degree-of-freedom workspace (2 ≤ d ≤ 6) with n ≥ d cables can generate a given set of wrenches in a given pose, considering acceptable minimum and maximum tensions in the cables.
Our research group has been investigating the effect of cyclic deformations on the evolution of fibroblast populated collagen gels (FPCG). Since existing traction machines are not designed for such an application, we had to design a cyclic traction machine adapted to tissue culture inside an incubator over an extended period of time. Biocompatible materials were used for fabrication to allow for easy sterilization and to prevent any adverse reaction from the tissue. The traction machine is based on a computer-controlled stepping motor system for easy adjustment of the deformation amplitude and frequency. The maximum stretching speed achieved is around 1 mm/s. The traction machine can measure FPCG mechanical properties and perform rupture tests to determine its ultimate strength. Several FPCGs have been successfully cultured with the machine for up to four weeks without any adverse reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.