A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies—a whole-genome assembly and a regional chromosome assembly—were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional ∼12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.
Anopheles gambiae is the principal vector of malaria, a disease that afflicts more than 500 million people and causes more than 1 million deaths each year. Tenfold shotgun sequence coverage was obtained from the PEST strain of A. gambiae and assembled into scaffolds that span 278 million base pairs. A total of 91% of the genome was organized in 303 scaffolds; the largest scaffold was 23.1 million base pairs. There was substantial genetic variation within this strain, and the apparent existence of two haplotypes of approximately equal frequency (“dual haplotypes”) in a substantial fraction of the genome likely reflects the outbred nature of the PEST strain. The sequence produced a conservative inference of more than 400,000 single-nucleotide polymorphisms that showed a markedly bimodal density distribution. Analysis of the genome sequence revealed strong evidence for about 14,000 protein-encoding transcripts. Prominent expansions in specific families of proteins likely involved in cell adhesion and immunity were noted. An expressed sequence tag analysis of genes regulated by blood feeding provided insights into the physiological adaptations of a hematophagous insect.
The thymidine analog 3'-azido-3'-deoxythymidine (BW A509U, azidothymidine) can inhibit human immunodeficiency virus (HIV) replication effectively in the 50-500 nM range [Mitsuya, H., Weinhold, K. J., Furman, P. A., St. Clair, M. H., Nusinoff-Lehrman, S., Gallo, R. C., Bolognesi, D., Barry, D. W. & Broder, S. (1985) Proc. Naul. Acad. Sci. USA 82,[7096][7097][7098][7099][7100]. In contrast, inhibition of the growth of uninfected human fibroblasts and lymphocytes has been observed only at concentrations above 1 mM. The nature of this selectivity was investigated. Azidothymidine anabolism to the 5'-mono-, -di-, and -triphosphate derivatives was similar in uninfected and HIV-infected cells. The level of azidothymidine monophosphate was high, whereas the levels of the di-and triphosphate were low (c5 MuM and <2 MuM, respectively).Cytosolic thymidine kinase (EC 2.7.1.21) was responsible for phosphorylation of azidothymidine to its monophosphate. Purified thymidine kinase catalyzed the phosphorylations of thymidine and azidothymidine with apparent K. values of 2.9MuM and 3.0 ,uM. The maximal rate of phosphorylation with azidothymidine was equal to 60% of the rate with thymidine. Phosphorylation of azidothymidine monophosphate to the diphosphate also appeared to be catalyzed by a host-cell enzyme, thymidylate kinase (EC 2.7.4.9). The apparent Km value for azidothymidine monophosphate was 2-fold greater than the value for dTMP (8.6 ,uM vs. 4.1 MM), but the maximal phosphorylation rate was only 0.3% of the dTMP rate. These kinetic constants were consistent with the anabolism results and indicated that azidothymidine monophosphate is an alternative-substrate inhibitor of thymidylate kinase. This conclusion was reflected in the observation that cells incubated with azidothymidine had reduced intracellular levels of dTTP. ICso (concentration of inhibitor that inhibits enzyme activity 50%) values were determined for azidothymidine triphosphate with HYIV reverse transcriptase and with immortalized human lymphocyte (H9 cell) DNA polymerase a. Azidothymidine triphosphate competed about 100-fold better for the HIV reverse transcriptase than for the cellular DNA polymerase a. The results reported here suggest that azidothymidine is nonselectively phosphorylated but that the triphosphate derivative efficiently and selectively binds to the HIV reverse transcriptase. Incorporation of azidothymidylate into a growing DNA strand should terminate DNA elongation and thus inhibit DNA synthesis.
The acquired immune deficiency syndrome (AIDS) is thought to result from infection of T cells by a pathogenic human retrovirus, human T-lymphotropic virus type III (HTLV-III) or lymphadenopathy-associated virus (LAV). In this report, we describe the antiviral effects of a thymidine analogue,3'-azido-3'-deoxythymidine (BW A509U), which, as a triphosphate, inhibits the reverse transcriptase of HTLV-III/LAV. This agent blocks the expression of the p24 gag protein of HTLV-III/LAV in H9 cells following exposure to virus. The drug also inhibits the cytopathic effect of HTLV-IIIB (a virus derived from a pool of American patients) and HTLV-III/RF-II (an isolate obtained from a Haitian patient that differs by about 20% in the amino acid sequence of the envelope gene from several isolates of HTLV-III/LAV, including HTLV-IIIB, analyzed so far). 3'-Azido-3'-deoxythymidine also completely blocks viral replication as assessed by reverse transcriptase production in normal human peripheral blood mononuclear cells exposed to HTLV-IIIB. Finally, at concentrations of 3'-azido-3'-deoxythymidine that block the in vitro infectivity and cytopathic effect of HTLV-IIIB, the in vitro immune functions of normal T cells remain basically intact.
Human T-lymphotropic virus type III (HTLV-I)/lymphadenopathy-associated virus (LAV) is a newly discovered lymphotropic retrovirus that is cytopathic for helper/inducer T cells in vitro. This virus is the etiologic agent of the acquired immunodeficiency syndrome and related diseases. In the current study, we tested the capacity of purine and pyrimidine nucleoside derivatives to inhibit the infectivity and cytopathic effect of human T-lymphotropic virus type Ill in vitro. With the ribose moiety of the molecule in a 2',3'-dideoxy configuration, every purine (adenosine, guanosine, and inosine) and pyrimidine (cytidine and thymidine) nucleoside tested suppressed the virus, although the thymidine derivative seemed to have substantially less activity in our system than the others. In general, we observed essentially complete suppression of the virus at doses that were lower by a factor of 10 to 20 than those needed to inhibit the proliferation of the target T cells and the immune reactivity of normal T cells in vitro. An analysis of five adenosine congeners, which differed only in the sugar moiety, revealed that reduction (an absence of hydroxyl determinants) at both the 2' and 3' carbons of the ribose was necessary for an anti-viral effect, and an additional reduction at the 5' carbon nullified the anti-viral activity. These observations may be of value in developing a new class of experimental drugs for the therapy of human T-lymphotropic virus type III infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.