Precision weeding can significantly reduce or even eliminate the use of herbicides in farming. To achieve high-precision, individual targeting of weeds, high-speed, low-cost plant identification is essential. Our system using the red, green, and near-infrared reflectance, combined with a size differentiation method, is used to identify crops and weeds in lettuce fields. Illumination is provided by LED arrays at 525, 650, and 850 nm, and images are captured in a single-shot using a modified RGB camera. A kinematic stereo method is utilised to compensate for parallax error in images and provide accurate location data of plants. The system was verified in field trials across three lettuce fields at varying growth stages from 0.5 to 10 km/h. In-field results showed weed and crop identification rates of 56% and 69%, respectively. Post-trial processing resulted in average weed and crop identifications of 81% and 88%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.