A conceptual design of an industrial production plant for activated carbon was developed to process 31.25 tons/day of industrial waste nutshells as the raw material and produce 6.6 ton/day of activated carbon using steam as an activation agent. The design considered the cost of the main equipment, the purchase price of the nutshells, basic services, and operation. A sensitivity analysis was developed, considering the price of the finished product and the volume of raw material processing varied up to ±25%. Furthermore, the total annual cost of the product was determined based on the production of 2100 tons/year of activated carbon. Two cash flows were developed and projected to periods of 10 years and 15 years of production, using a tax rate of 27%, a low discount rate (LDR) of 10% per year, and without external financing. For a 10-year production project, the net present value (NPV) was USD 2,785,624, the internal return rate (IRR) 21%, the return on investment (ROI) 25%, and the discounted payback period (DPP) after the fifth year. Considering a project with 15 years of production, the NPV was USD 4,519,482, the IRR at 23%, the ROI 24%, and the DPP after the fifth year of production.
Most developing countries lack sufficient legal and management infrastructure to dispose of urban solid waste (USW). The continuous increase of USW generation requires evaluating different treatments for developing countries based on the life cycle assessment methodology to compare the environmental impact by reducing greenhouse gases and leachate. Hydrothermal carbonization (HTC) and gasification processes are presented as potential solutions for USW treatment due to their efficiency in producing energy for local requirements. This study aimed to compare both technologies for Temuco and Padre Las Casas cities in Southern Chile that show severe air pollution and USW management problems. The results indicated that gasification had a better environmental performance than HTC when the conversion of 1 ton of organic fraction USW was analyzed. However, since HTC achieved higher energy efficiency, it had a lower environmental impact than gasification, considering the production of 1 MWh. For a definitive choice of the technology to be used, it is necessary to compare other variables, including economic and social aspects, to provide a holistic perspective.
The effect of magnesium chloride as an additive of hydrothermal carbonization (HTC) of lignocellulosic biomass (Pinus radiata sawdust) was studied. The HTC tests were carried out at fixed conditions of temperature and residence time of 220 °C and 1 h, respectively, and varying the dose of magnesium chloride in the range 0.0–1.0 g MgCl2/g biomass. The carbonized product (hydrochar) was tested in order to determine its calorific value (HHV) while using PARR 6100 calorimeter, mass yield by gravimetry, elemental analysis using a LECO TruSpec elemental analyzer, volatile matter content, and ash content were obtained by standardized procedures using suitable ovens for it. The results show that using a dose of 0.75 g MgCl2/g biomass results in an impact on the mass yield that was almost equal to change operating conditions from 220 to 270 °C and from 0.5 to 1 h, without additive. Likewise, the calorific value increases by 33% for this additive dose, resulting in an energy yield of 68%, thus generating a solid fuel of prominent characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.