Semiconductor quantum dots (QDs) have been widely used for fluorescent labelling. However, their ability to transfer electrons and holes to biomolecules leads to spectral changes and effects on living systems that have yet to be exploited. Here we report the first cell-based biosensor based on electron transfer between a small molecule (the neurotransmitter dopamine) and CdSe/ZnS QDs. QD-dopamine conjugates label living cells in a redox-sensitive pattern: under reducing conditions, fluorescence is only seen in the cell periphery and lysosomes. As the cell becomes more oxidizing, QD labelling appears in the perinuclear region, including in or on mitochondria. With the most-oxidizing cellular conditions, QD labelling throughout the cell is seen. Phototoxicity results from the creation of singlet oxygen, and can be reduced with antioxidants. This work suggests methods for the creation of phototoxic drugs and for redox-specific fluorescent labelling that are generalizable to any QD conjugated to an electron donor.
Investigation of many cellular processes using fluorescent quantum dots (QDs) is hindered by the nontrivial requirements for QD surface functionalization and targeting. To address these challenges, we designed, characterized and applied QD-trisNTA, which integrates tris-nitrilotriacetic acid, a small and high-affinity recognition unit for the ubiquitous polyhistidine protein tag. Using QD-trisNTA, we demonstrate two-color QD tracking of the type-1 interferon receptor subunits in live cells, potentially enabling direct visualization of protein-protein interactions at the single molecule level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.