The handicap hypothesis of sexual selection predicts that sexual ornaments have evolved heightened condition-dependent expression. The prediction has only recently been subject to experimental investigation. Many of the experiments are of limited value as they: (i) fail to compare condition dependence in sexual ornaments with suitable non-sexual trait controls; (ii) do not adequately account for body size variation; and (iii) typically consider no stress and extreme stress manipulations rather than a range of stresses similar to those experienced in nature. There is also a dearth of experimental studies investigating the genetic basis of condition dependence. Despite the common claim that sexual ornaments are conditiondependent, the unexpected conclusion from our literature review is that there is little support from welldesigned experiments.
The last decade has witnessed considerable theoretical and empirical investigation of how male sexual ornaments evolve. This strong male-biased perspective has resulted in the relative neglect of variation in female mate preferences and its consequences for ornament evolution. As sexual selection is a co-evolutionary process between males and females, ignoring variation in females overlooks a key aspect of this process. Here, we review the empirical evidence that female mate preferences, like male ornaments, are condition dependent. We show accumulating support for the hypothesis that high quality females show the strongest mate preference. Nonetheless, this is still an infant field, and we highlight areas in need of more research, both theoretical and empirical. We also examine some of the wider implications of condition-dependent mating decisions and their effect on the strength of sexual selection.
We used the stalk-eyed fly Cyrtodiopsis dalmanni to examine predictions made by condition-dependent handicap models of sexual selection. Condition was experimentally varied by manipulation of larval food availability. Cyrtodiopsis dalmanni is a highly dimorphic species exhibiting strong sexual selection, and the male sexual ornament (exaggerated eyespan) showed strong condition-dependent expression relative to the homologous trait in females and nonsexual traits. Male eyespan also showed a great increase in standardized variance under stress, unlike nonsexual traits. The inflated variance of the male ornament was primarily attributable to condition-dependent (but body-size-independent) increase in variance. Thus, evaluation of male eyespan allows females to gain additional information about male condition over and above that given by body size. These findings accord well with condition-dependent handicap models of sexual selection.
When sex determination in a species is predominantly genetic but environmentally reversible, exposure to (anthropogenic) changes in the environment can lead to shifts in a population's sex ratio. Such scenarios may be common in many fishes and amphibians, yet their ramifications remain largely unexplored.We used a simple model to study the (short-term)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.