Soft tissue moves relative to the underlying bone during locomotion. Research has shown that soft tissue motion has an effect on aspects of the dynamics of running; however, little is known about the effects of soft tissue motion on the joint kinetics. In the present study, for a single subject, soft tissue motion was modeled using wobbling components in an inverse dynamics analysis to access the effects of the soft tissue on joint kinetics at the knee and hip. The added wobbling components had little effect on the knee joint kinetics, but large effects on the hip joint kinetics. In particular, the hip joint power and net negative and net positive mechanical work at the hip was greatly underestimated when calculated with the model without wobbling components compared with that of the model with wobbling components. For example, for low-frequency wobbling conditions, the magnitude of the peak hip joint moments were 50% greater when computed accounting the wobbling masses compared with a rigid body model, while for high-frequency wobbling conditions, the peaks were within 15%. The present study suggests that soft tissue motion should not be ignored during inverse dynamics analyses of running.
Humans are made up of mostly soft tissue that vibrates during locomotion. This vibration has been shown to store and dissipate energy during locomotion. However, the effects of soft tissue vibration (wobbling masses) on the dynamics of bipedal walking have not been assessed in terms of stability. Given that much of the human body is vibrating just following foot-ground contact, it may have dynamic implications on the stability of walking. A rigid bipedal walker and a bipedal walker with soft tissue were simulated to quantify the effects of soft tissue vibration on gait periodicity, orbital stability, global stability, and robustness to uneven terrain. It was found that moderate amounts of energy dissipation resulted in much more stable walking dynamics relative to that of a rigid bipedal walker.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.