This paper solves an important problem left open in the literature by showing that U-shapes are unnecessary in iterative learning from positive data. A U-shape occurs when a learner first learns, then unlearns, and, finally, relearns, some target concept. Iterative learning is a Gold-style learning model in which each of a learner's output conjectures depends only upon the learner's most recent conjecture and input element. Previous results had shown, for example, that U-shapes are unnecessary for explanatory learning, but are necessary for behaviorally correct learning.Work on the aforementioned problem led to the consideration of an iterative-like learning model, in which each of a learner's conjectures may, in addition, depend upon the number of elements so far presented to the learner. Learners in this new model are strictly more powerful than traditional iterative learners, yet not as powerful as full explanatory learners. Can any class of languages learnable in this new model be learned without U-shapes? For now, this problem is left open.
Intuitively, a recursion theorem asserts the existence of self-referential programs. Two well-known recursion theorems are Kleene's Recursion Theorem (krt) and Rogers' Fixpoint Recursion Theorem (fprt). Does one of these two theorems better capture the notion of program self-reference than the other? In the context of the partial computable functions over the natural numbers (PC), fprt is strictly weaker than krt, in that fprt holds in any effective numbering of PC in which krt holds, but not vice versa. It is shown that, in this context, the existence of self-reproducing programs (a.k.a. quines) is assured by krt, but not by fprt. Most would surely agree that a self-reproducing program is self-referential. Thus, this result suggests that krt is better than fprt at capturing the notion of program self-reference in PC.A generalization of krt to arbitrary constructive Scott subdomains is then given. (For fprt, a similar generalization was already known.) Surprisingly, for some such subdomains, the two theorems turn out to be equivalent. A precise characterization is given of those constructive Scott subdomains in which this occurs. For such subdomains, the two theorems capture the notion of program self-reference equally well. This is an expanded version of [7].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.