The ability to make electrical contact to single molecules creates opportunities to examine fundamental processes governing electron flow on the smallest possible length scales. We report experiments in which we controllably stretched individual cobalt complexes having spin S = 1, while simultaneously measuring current flow through the molecule. The molecule's spin states and magnetic anisotropy were manipulated in the absence of a magnetic field by modification of the molecular symmetry. This control enabled quantitative studies of the underscreened Kondo effect, in which conduction electrons only partially compensate the molecular spin. Our findings demonstrate a mechanism of spin control in single-molecule devices and establish that they can serve as model systems for making precision tests of correlated-electron theories.
Senile plaques (SPs) and neurofibrillary tangles (NFTs) are hallmark pathologies accompanying the neurodegeneration involved in Alzheimer's disease (AD), for which beta-amyloid (Abeta) peptide is a major constituent of SPs. Our laboratories previously developed the hydrophobic, fluorescent molecular-imaging probe 2-(1-(6-[(2-[(18)F]fluoroethyl)(methyl)amino]-2-naphthyl)ethylidene)malononitrile ([(18)F]FDDNP), which crosses the blood-brain barrier and determines the localization and load of SPs and NFTs in vivo in AD patients. In this report, we used fluorimetric and radioactive binding assays to determine the binding affinities of FDDNP and its analog, 1-(6-[(2-[(18)F]fluoroethyl)(methyl)amino]naphthalen-2-yl)ethanone ([(18)F]FENE), to synthetic fibrils of Abeta(1-40). FDDNP and FENE both appeared to bind to two kinetically distinguishable binding sites on Abeta(1-40) fibrils. Fluorescence titrations yielded apparent K(d) values of 0.12 and 0.16 nm for high-affinity binding sites for FDDNP and FENE, respectively, and apparent K(d) values of 1.86 and 71.2 nm for the low-affinity binding sites. The traditional radioactive binding assays also produced apparent K(d) values in the low nanomolar range. The presence of two kinetically distinguishable binding sites for FDDNP and FENE suggests multiple binding sites for SPs and identifies the parameters that allow for the structural optimization of this family of probes for in vivo use. The high-affinity binding of the probes to multiple binding sites on fibrils are consistent with results obtained with digital autoradiography, immunohistochemistry, and confocal fluorescence microscopy using human brain specimens of AD patients.
We study electron transport through C(60) molecules in the Kondo regime using a mechanically controllable break junction. By varying the electrode spacing, we are able to change both the width and the height of the Kondo resonance, indicating modification of the Kondo temperature and the relative strength of coupling to the two electrodes. The linear conductance as a function of T/T(K) agrees with the scaling function expected for the spin-1/2 Kondo problem. We are also able to tune finite-bias Kondo features which appear at the energy of the first C(60) intracage vibrational mode.
We have electrospun light-emitting nanofibers from ruthenium(II) tris(bipyridine)/polyethylene oxide mixtures. The electroluminescent fibers were deposited on gold interdigitated electrodes and lit in a nitrogen atmosphere. The fibers showed light emission at low operating voltages (3-4 V), with turn-on voltages approaching the band gap limit of the organic semiconductor. Because of the fiber size, emission from electrospun light-emitting nanofibers is confined to nanoscale dimensions, an attractive feature for sensing applications and lab-on-a-chip integration where highly localized excitation of molecules is required.
We have used matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and micro-Raman spectroscopy to identify a quenching species that is formed during operation of [Ru(bpy)3]2+ electroluminescent devices. We identify this performance-degrading product to be the oxo-bridged dimer [(bpy)2(H2O)RuORu(OH2)(bpy)2]4+ and show this dimer to be an effective quencher of device luminescence. This work is the first to detect a specific chemical degradation product formed during iTMC OLED operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.