Interleukin-8 has been shown by X-ray crystallography and NMR to be a homodimer, suggesting that this is the form which binds to its receptor. Here we measure, for the first time, the monomer-dimer equilibrium of interleukin-8 using analytical ultracentrifugation and titration microcalorimetry and find that it dissociates readily to monomers with an equilibrium dissociation constant of 18 +/- 6 microM at 37 degrees C. The present findings suggest that the monomer is the form which binds to the receptor. Comparison of experimental and structure-based calculated thermodynamics of interleukin-8 dimerization argues for limited subunit conformational changes upon dissociation to monomer.
We present the first study of the changes in the assembly and organization of actin filaments and microtubules that occur in epithelial cells subjected to the hydrostatic pressures of the deep sea. Interphase BSC-1 epithelial cells were pressurized at physiological temperature and fixed while under pressure. Changes in cell morphology and cytoskeletal organization were followed over a range of pressures from 1 to 610 atm. At atmospheric pressure, cells were flat and well attached. Exposure of cells to pressures of 290 atm or greater caused cell rounding and retraction from the substrate. This response became more pronounced with increased pressure, but the degree of response varied within the cell population in the pressure range of 290-400 atm. Microtubule assembly was not noticeably affected by pressures up to 290 atm, but by 320 atm, few microtubules remained. Most actin stress fibers completely disappeared by 290 atm. High pressure did not simply induce the overall depolymerization of actin filaments for, concurrent with cell rounding, the number of visible microvilli present on the cell surface increased dramatically. These effects of high pressure were reversible. Cells re-established their typical morphology, microtubule arrays appeared normal, and stress fibers reformed after approximately 1 hour at atmospheric pressure. High pressure may disrupt the normal assembly of microtubules and actin filaments by affecting the cellular regulatory mechanisms that control cytological changes during the transition from interphase into mitosis.
Chicken erythrocyte histones 2A, 2B, and 3 can be resolved into nonallelic primary structure variants by polyacrylamide gel electrophoresis in the presence of Triton X-100. These variants were isolated and characterized by analysis of their tryptic and thermolytic peptides. The major variants of chicken H2A and H2B differ from the analogous component of calf thymus by a small number of conservative amino acid substitutions in the basic terminal regions, which interact with DNA. This moderate rate of allelic evolution of the slightly lysine-rich histones contrasts with the complete conservatism found in the arginine-rich histones. Chicken H4 and both chicken H3 variants are identical with their corresponding components in mammals. The amino acid substitutions distinguishing histone variants are located within the highly conserved hydrophobic regions, which are involved in histone--histone interactions.
Changes in the relative amount of two histone H2A subfractions have been observed in cells at different proliferative stages of Friend leukemia. Biochemical analyses of the purified H2A subfractions reveal them to be different in primary structure, and not the result of postsynthetic modifications of the same parent protein. Antibodies raised against the purified H2A.2 subfraction cross react with H2A.1 and H2A.2, but show high specificity for the immunizing subfraction at higher sera dilutions. Only H2A.2 contains a methionine which appears critical to an antigenic difference that immunologically distinguishes H2A.2 from H2A.1. The observed change in the relative amounts of two nonallelic variants of a histone coincident with changes in the physiologic states of the cell may indicate a correlation between genome structure and function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.