Breast cancer, the most common of types of cancer that threatens human life more specifically women can be diagnosed with classification techniques of data mining. This work is an extension of earlier implementation of breast cancer analysis of the author through iterative linear regressive classifier. The objective of this study is to make cent percent prediction accuracy in the diagnosis of breast cancer over the traditional Wisconsin dataset. The novelty of the paper includes the benefits of the previous ILRC and also takes the advantages of AI. The results of the proposed work are evaluated against the randmeasure and have proven that the results yield cent percent prediction accuracy in diagnosing breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.