It has been well established that the regulation of gene activity is strongly dependent on the higher-order structure of genomic DNA molecules.[1] Several strategies have thus been developed to control the higher-order structure of long DNA molecules. Most of them have been based on the use of chemical compounds that bind to DNA to neutralize its charge, such as polyamines, multivalent metal cations, cationic surfactants, cationic polymers, nanoparticles, or crowding agents such as hydrophilic polymers.[2] Depending on the concentration of these additives, DNA exhibits a folded or unfolded conformation. Nevertheless, with all these strategies, it is impossible to act in a reversible way on the DNA higher-order structure under a constant chemical composition.Moreover, for transfection applications, compacting DNA is an essential step to allow the entry of DNA into the cell. In most cases, however, DNA remains in a compact conformation inside the cell, which can significantly alter the DNA gene expression. Using an external stimulus to control DNA higherorder structure within a cell-sized compartment has thus became an important challenge.On the other hand, motivated by the perspective of DNA vectorization, [3] preparation of artificial cells [4] or biochemical microreactors, [5] many scientists have attempted to encapsulate DNA into cell-like microcompartments, for example, cellsized liposomes [6] or phospholipid-coated microdroplets. [7] Consequently, various successful strategies have been proposed to prepare DNA-liposome complexes [8] or encapsulate DNA inside liposomes.[9] In most cases encapsulated DNA molecules were typically smaller than a few thousands base pairs. However, in nature, genomic DNA molecules can be much larger, up to hundreds of kbp (kilo base pairs). To the best of our knowledge, no method has been proposed to encapsulate efficiently, in a controlled way, and without degradation, DNA molecules that are larger than 1 kbp into cell-sized liposomes. One paper reported the encapsulation of T4 DNA molecules, but the data were not sufficient to draw conclusions about the integrity of encapsulated DNA chains.[10] Another strategy was to encapsulate DNA in a compact state, but DNA molecules remained in their compact state once they were encapsulated. [11] Very recently, Le Ny and Lee made a breakthrough by proposing a system where DNA higher-structure can be controlled by light in a reversible manner. [12] This was achieved by adding to a DNA solution a photosensitive cationic surfactant, azobenzene trimethylammonium bromide surfactant (AzoTAB). The apolar tail of the surfactant contains an azo group, which is mainly in the trans (more hydrophobic) conformation under visible conditions. Under UV illumination (365 nm), the azo group photoisomerizes into the cis (more hydrophilic) conformation. They demonstrated that there exists an AzoTAB concentration range for which DNA is in the compact state under dark/visible conditions but in the unfolded state under UV illumination, that is, DNA higher-orde...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.