Alongside the rising global water demand, continued stress on current water supplies has sparked interest in using nontraditional source waters for energy, agriculture, industry, and domestic needs. Membrane technologies have emerged as one of the most promising approaches to achieve water security, but implementation of membrane processes for increasingly complex waters remains a challenge. The technical feasibility of membrane processes replacing conventional treatment of alternative water supplies (e.g., wastewater, seawater, and produced water) is considered in the context of typical and emerging water quality goals. This review considers the effectiveness of current technologies (both conventional and membrane based), as well as the potential for recent advancements in membrane research to achieve these water quality goals. We envision the future of water treatment to integrate advanced membranes (e.g., mixed-matrix membranes, block copolymers) into smart treatment trains that achieve several goals, including fit-for-purpose water generation, resource recovery, and energy conservation.
Hurricane Harvey devastated large parts of the US Gulf Coast in 2017, and its floodwaters posed a number of threats to the environment and human health. In particular, an estimated 375 000 Texas residents experienced issues related to the provision of safe drinking water at the peak of the hurricane. In this study, physical, chemical, and biological water quality was monitored in two drinking water systems in Texas following Hurricane Harvey to understand the relationship between water quality parameters and changes in the drinking water microbiota. Results show initial surges in total organic carbon, trihalomethanes, and bacterial concentrations in finished water immediately following Hurricane Harvey. Microbial community analyses highlight the dependence of the distribution system microbiota on distribution system characteristics (i.e. water age), raw water quality, and disinfectant residual, among other factors. While both systems had problems maintaining disinfectant residual in the weeks following the hurricane, stabilization of water quality occurred over time.Overall, this study provides an understanding of the challenges associated with maintaining drinking water quality in the wake of a natural disaster and can be used to better prepare drinking water managers and engineers to combat changing weather patterns in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.