Countries and cities around the world have resorted to unprecedented mobility restrictions to combat COVID-19 transmission. Here we exploit a natural experiment whereby Colombian cities implemented varied lockdown policies based on ID number and gender to analyse the impact of these policies on urban mobility. Using mobile phone data, we find that the restrictiveness of cities’ mobility quotas (the share of residents allowed out daily according to policy advice) does not correlate with mobility reduction. Instead, we find that larger, wealthier cities with more formalized and complex industrial structure experienced greater reductions in mobility. Within cities, wealthier residents are more likely to reduce mobility, and commuters are especially more likely to stay at home when their work is located in wealthy or commercially/industrially formalized neighbourhoods. Hence, our results indicate that cities’ employment characteristics and work-from-home capabilities are the primary determinants of mobility reduction. This finding underscores the need for mitigations aimed at lower income/informal workers, and sheds light on critical dependencies between socio-economic classes in Latin American cities.
Using particle-scale models to accurately describe property enhancements and phase transitions in macroscopic behavior is a major engineering challenge in composite materials science. To address some of these challenges, we use the graph theoretic property of rigidity to model mechanical reinforcement in composites with stiff rod-like particles. We develop an efficient algorithmic approach called rigid graph compression (RGC) to describe the transition from floppy to rigid in disordered fiber networks (“rod-hinge systems”), which form the reinforcing phase in many composite systems. To establish RGC on a firm theoretical foundation, we adapt rigidity matroid theory to identify primitive topological network motifs that serve as rules for composing interacting rigid particles into larger rigid components. This approach is computationally efficient and stable, because RGC requires only topological information about rod interactions (encoded by a sparse unweighted network) rather than geometrical details such as rod locations or pairwise distances (as required in rigidity matroid theory). We conduct numerical experiments on simulated two-dimensional rod-hinge systems to demonstrate that RGC closely approximates the rigidity percolation threshold for such systems, through comparison with the pebble game algorithm (which is exact in two dimensions). Importantly, whereas the pebble game is derived from Laman’s condition and is only valid in two dimensions, the RGC approach naturally extends to higher dimensions.
Cities are home to a vast array of amenities, from local barbers to science museums and shopping malls. But these are unequally distributed across urban space. Using Google Places data combined with trip-based mobility data for Bogotá, Colombia, we shed light on the impact of neighbourhood amenities on urban mobility patterns. By deriving a new accessibility metric that explicitly takes into account spatial range, we find that a higher density of local amenities is associated with a higher likelihood of walking as well as shorter bus and car trips. Digging deeper, we use an effect modification framework to show that this relationship varies by socioeconomic status. Our main focus is walking and driving, finding that amenities within about a 1-km radius from home are robustly associated with a higher propensity to walk and shorter driving time only for the wealthiest group. These results suggest that wealthier groups may weigh the proximity of local amenities more heavily into travel decisions, perhaps based on differentiated time-money trade-offs. As cities globally aim to boost public transport and green travel, these findings enable us to better understand how commercial structure shapes urban mobility in highly income-segregated settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.