Neural personalized recommendation models are used across a wide variety of datacenter applications including search, social media, and entertainment. State-of-the-art models comprise large embedding tables that have billions of parameters requiring large memory capacities. Unfortunately, large and fast DRAM-based memories levy high infrastructure costs. Conventional SSD-based storage solutions offer an order of magnitude larger capacity, but have worse read latency and bandwidth, degrading inference performance. RecSSD is a near data processing based SSD memory system customized for neural recommendation inference that reduces end-to-end model inference latency by 2× compared to using COTS SSDs across eight industry-representative models.
CCS CONCEPTS• Hardware → External storage; • Computer systems organization → Neural networks.
Neural personalized recommendation is the cornerstone of a wide collection of cloud services and products, constituting significant compute demand of the cloud infrastructure. Thus, improving the execution efficiency of neural recommendation directly translates into infrastructure capacity saving. In this paper, we devise a novel end-to-end modeling infrastructure, DeepRecInfra, that adopts an algorithm and system co-design methodology to custom-design systems for recommendation use cases. Leveraging the insights from the recommendation characterization, a new dynamic scheduler, DeepRecSched, is proposed to maximize latency-bounded throughput by taking into account characteristics of inference query size and arrival patterns, recommendation model architectures, and underlying hardware systems. By doing so, system throughput is doubled across the eight industry-representative recommendation models. Finally, design, deployment, and evaluation in at-scale production datacenter shows over 30% latency reduction across a wide variety of recommendation models running on hundreds of machines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.