Gastric cancer is the third leading cause of cancer-related deaths worldwide. Over 95% of gastric cancers are adenocarcinomas, which are typically classified based on anatomic location and histologic type. Gastric cancer generally carries a poor prognosis because it is often diagnosed at an advanced stage. Systemic therapy can provide palliation, improved survival, and enhanced quality of life in patients with locally advanced or metastatic disease. The implementation of biomarker testing, especially analysis of HER2 status, microsatellite instability (MSI) status, and the expression of programmed death-ligand 1 (PD-L1), has had a significant impact on clinical practice and patient care. Targeted therapies including trastuzumab, nivolumab, and pembrolizumab have produced encouraging results in clinical trials for the treatment of patients with locally advanced or metastatic disease. Palliative management, which may include systemic therapy, chemoradiation, and/or best supportive care, is recommended for all patients with unresectable or metastatic cancer. Multidisciplinary team management is essential for all patients with localized gastric cancer. This selection from the NCCN Guidelines for Gastric Cancer focuses on the management of unresectable locally advanced, recurrent, or metastatic disease.
Mutant-selective KRAS G12C inhibitors, such as MRTX849 (adagrasib) and AMG 510 (sotorasib), have demonstrated efficacy in KRAS G12C -mutant cancers including non-small cell lung cancer (NSCLC). However, mechanisms underlying clinical acquired resistance to KRAS G12C inhibitors remain undetermined. To begin to define the mechanistic spectrum of acquired resistance, we describe a KRAS G12C NSCLC patient who developed polyclonal acquired resistance to MRTX849 with the emergence of 10 heterogeneous resistance alterations in serial cell-free DNA spanning four genes (KRAS, NRAS, BRAF, MAP2K1), all of which converge to reactivate RAS-MAPK signaling. Notably, a novel KRAS Y96D mutation affecting the switch-II pocket, to which MRTX849 and other inactive-state inhibitors bind, was identified that interferes with key protein-drug interactions and confers resistance to these inhibitors in engineered and patientderived KRAS G12C cancer models. Interestingly, a novel, functionally distinct tri-complex KRAS G12C active-state inhibitor RM-018 retained the ability to bind and inhibit KRAS G12C/Y96D and could overcome resistance.
STATEMENT OF SIGNIFICANCEIn one of the first reports of clinical acquired resistance to KRAS G12C inhibitors, our data suggest polyclonal RAS-MAPK reactivation as a central resistance mechanism. We also identify a novel KRAS switch-II pocket mutation that impairs binding and drives resistance to inactive-state inhibitors but is surmountable by a functionally-distinct KRAS G12C inhibitor.Research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.