Intravenous administration of tissue-type plasminogen activator (IV tPA) therapy has long been considered a mainstay in ischemic stroke management. However, patients respond to IV tPA therapy unequally with some subsets of patients having worsened outcomes after treatment. In particular, diabetes mellitus (DM) is recognized as a clinically important vascular comorbidity that leads to lower recanalization rates and increased risks of hemorrhagic transformation (HT). In this short-review, we summarize the recent advances in understanding of the underlying mechanisms involved in post-IV tPA worsening of outcome in diabetic stroke. Potential pathologic factors that are related to the suboptimal tPA recanalization in diabetic stroke include higher plasma plasminogen activator inhibitor (PAI)-1 level, diabetic atherogenic vascular damage, glycation of the tPA receptor annexin A2, and alterations in fibrin clot density. While factors contributing to the exacerbation of HT in diabetic stroke include hyperglycemia, vascular oxidative stress, and inflammation, tPA neurovascular toxicity and imbalance in extracellular proteolysis are discussed. Besides, impaired collaterals in DM also compromise the efficacy of IV tPA therapy. Additionally, several tPA combination approaches developed from experimental studies that may help to optimize IV tPA therapy are also briefly summarized. In summary, more research efforts are needed to improve the safety and efficacy of IV tPA therapy in ischemic stroke patients with DM/poststroke hyperglycemia.
Blood-brain barrier (BBB) disruption following ischemic stroke (IS) contributes to hemorrhagic transformation, brain edema, increased neural dysfunction, secondary injury, and mortality. Brain endothelial cells form a para and transcellular barrier to most blood-borne solutes via tight junctions (TJs) and rare transcytotic vesicles. The prevailing view attributes the destruction of TJs to the resulting BBB damage following IS. Recent studies define a stepwise impairment of the transcellular barrier followed by the paracellular barrier which accounts for the BBB leakage in IS. The increased endothelial transcytosis that has been proven to be caveolae-mediated, precedes and is independent of TJs disintegration. Thus, our understanding of post stroke BBB deficits needs to be revised. These recent findings could provide a conceptual basis for the development of alternative treatment strategies. Presently, our concept of how BBB endothelial transcytosis develops is incomplete, and treatment options remain limited. This review summarizes the cellular structure and biological classification of endothelial transcytosis at the BBB and reviews related molecular mechanisms. Meanwhile, relevant transcytosis-targeted therapeutic strategies for IS and research entry points are prospected.
In the pathophysiology of hemorrhagic stroke, the perturbation of the neurovascular unit (NVU), a functional group of the microvascular and brain intrinsic cellular components, is implicated in the progression of secondary injury and partially informs the ultimate patient outcome. Given the broad NVU functions in maintaining healthy brain homeostasis through its maintenance of nutrients and energy substrates, partitioning central and peripheral immune components, and expulsion of protein and metabolic waste, intracerebral hemorrhage (ICH)-induced dysregulation of the NVU directly contributes to numerous destructive processes in the post-stroke sequelae. In ICH, the damaged NVU precipitates the emergence and evolution of perihematomal edema as well as the breakdown of the blood–brain barrier structural coherence and function, which are critical facets during secondary ICH injury. As a gateway to the central nervous system, the NVU is among the first components to interact with the peripheral immune cells mobilized toward the injured brain. The release of signaling molecules and direct cellular contact between NVU cells and infiltrating leukocytes is a factor in the dysregulation of NVU functions and further adds to the acute neuroinflammatory environment of the ICH brain. Thus, the interactions between the NVU and immune cells, and their reverberating consequences, are an area of increasing research interest for understanding the complex pathophysiology of post-stroke injury. This review focuses on the interactions of T-lymphocytes, a major cell of the adaptive immunity with expansive effector function, with the NVU in the context of ICH. In cataloging the relevant clinical and experimental studies highlighting the synergistic actions of T-lymphocytes and the NVU in ICH injury, this review aimed to feature emergent knowledge of T cells in the hemorrhagic brain and their diverse involvement with the neurovascular unit in this disease.
Cerebral metabolic dysfunction has been shown to extensively mediate the pathophysiology of brain injury after subarachnoid hemorrhage (SAH). The characterization of the alterations of metabolites in the brain can help elucidate pathophysiological changes occurring throughout SAH and the relationship between secondary brain injury and cerebral energy dysfunction after SAH. Cerebral microdialysis (CMD) is a tool that can measure concentrations of multiple bioenergetics metabolites in brain interstitial fluid. This review aims to provide an update on the implication of CMD on the measurement of metabolic dysfunction in the brain after SAH. A literature review was conducted through a general PubMed search with the terms “Subarachnoid Hemorrhage AND Microdialysis” as well as a more targeted search using MeSh with the search terms “Subarachnoid hemorrhage AND Microdialysis AND Metabolism.” Both experimental and clinical papers were reviewed. CMD is a suitable tool that has been used for monitoring cerebral metabolic changes in various types of brain injury. Clinically, CMD data have shown the dramatic changes in cerebral metabolism after SAH, including glucose depletion, enhanced glycolysis, and suppressed oxidative phosphorylation. Experimental studies using CMD have demonstrated a similar pattern of cerebral metabolic dysfunction after SAH. The combination of CMD and other monitoring tools has also shown value in further dissecting and distinguishing alterations in different metabolic pathways after brain injury. Despite the lack of a standard procedure as well as the presence of limitations regarding CMD application and data interpretation for both clinical and experimental studies, emerging investigations have suggested that CMD is an effective way to monitor the changes of cerebral metabolic dysfunction after SAH in real-time, and alternatively, the combination of CMD and other monitoring tools might be able to further understand the relationship between cerebral metabolic dysfunction and brain injury after SAH, determine the severity of brain injury and predict the pathological progression and outcomes after SAH. More translational preclinical investigations and clinical validation may help to optimize CMD as a powerful tool in critical care and personalized medicine for patients with SAH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.