Valvular heart diseases are complex disorders, varying in pathophysiological mechanism and affected valve components. Understanding the effects of these diseases on valve functionality requires a thorough characterization of the mechanics and structure of the healthy heart valves. In this study, we performed biaxial mechanical experiments with extensive testing protocols to examine the mechanical behaviors of the mitral valve and tricuspid valve leaflets. We also investigated the effect of loading rate, testing temperatures, species (porcine versus ovine hearts), and age (juvenile vs adult ovine hearts) on the mechanical responses of the leaflet tissues. In addition, we evaluated the structure of chordae tendineae within each valve and performed histological analysis on each atrioventricular leaflet. We found all tissues displayed a characteristic nonlinear anisotropic mechanical response, with radial stretches on average 30.7% higher than circumferential stretches under equibiaxial physiological loading. Tissue mechanical responses showed consistent mechanical stiffening in response to increased loading rate and minor temperature dependence in all five atrioventricular heart valve leaflets. Moreover, our anatomical study revealed similar chordae quantities in the porcine mitral (30.5 ± 1.43 chords) and tricuspid valves (35.3 ± 2.45 chords) but significantly more chordae in the porcine than the ovine valves (p < 0.010). Our histological analyses quantified the relative thicknesses of the four distinct morphological layers in each leaflet. This study provides a comprehensive database of the mechanics and structure of the atrioventricular valves, which will be beneficial to development of subject-specific atrioventricular valve constitutive models and toward multi-scale biomechanical investigations of heart valve function to improve valvular disease treatments.
This dataset contains the anisotropic tissue responses of porcine atrioventricular valve leaflets to force-controlled biaxial mechanical testing. The set includes the first Piola-Kirchhoff Stress and the specimen stretches (λ) in both circumferential and radial tissue directions (C and R, respectively) for the mitral valve anterior and posterior leaflets (MVAL and MVPL), and the tricuspid valve anterior, posterior, and septal leaflets (TVAL, TVPL, and TVSL) from six porcine hearts at five separate force-controlled biaxial loading protocols. This dataset is associated with a companion journal article, which can be consulted for further information about the methodology, results, and discussion of this biaxial mechanical testing (Jett et al., in press) [1].
Background: Microvascular disease (MVD) describes systemic changes in the small vessels (~100 um diameter) that impair tissue oxygenation and perfusion. MVD is a common but poorly monitored complication of diabetes. Recent studies have demonstrated that MVD: (i) is an independent risk factor for ulceration and amputation and (ii) increases risk of adverse limb outcomes synergistically with PAD. Despite the clinical relevance of MVD, microvascular evaluation is not standard in a vascular assessment. Methods: We evaluated 299 limbs from 153 patients seen clinically for possible lower extremity PAD. The patients were assessed by ankle brachial index (ABI), toe brachial index (TBI), and spatial frequency domain imaging (SFDI). These measurements were evaluated and compared to patient MVD status, defined by clinical diagnoses of (in ascending order of severity) no diabetes; diabetes; diabetes + neuropathy; diabetes + neuropathy + retinopathy. Results: SFDI-derived parameters HbT1 and StO2 were significantly different across the MVD groups ( P < .001). A logistic regression model based on HbT1 and StO2 differentiated limbs with severe MVD (diabetes+neuropathy+retinopathy) from the larger group of limbs from patients with only diabetes ( P = .001, area under the curve = 0.844). Neither ABI nor TBI significantly differentiated these populations. Conclusions: Standard assessment of PAD using ABI and TBI are inadequate for detecting MVD in at-risk populations. SFDI-defined HbT1 and StO2 are promising tools for evaluating MVD. Prospective studies with wound-based outcomes would be useful to further evaluate the role MVD assessment could play in routine clinical evaluation of patients at risk for lower extremity complications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.