BackgroundFalciparum malaria is an important risk factor for African Burkitt lymphoma (BL), but few studies have evaluated malaria patterns in healthy BL-age children in populations where both diseases are endemic. To obtain accurate current data, patterns of asymptomatic malaria were investigated in northern Uganda, where BL is endemic.MethodsBetween 2011 and 2015, 1150 apparently healthy children under 15 years old were sampled from 100 villages in northern Uganda using a stratified, multi-stage, cluster survey design. Falciparum malaria prevalence (pfPR) was assessed by questionnaire, rapid diagnostic test (RDT) and thick film microscopy (TFM). Weighted pfPR and unadjusted and adjusted associations of prevalence with covariates were calculated using logistic models and survey methods.ResultsBased on 1143 children successfully tested, weighted pfPR was 54.8% by RDT and 43.4% by TFM. RDT sensitivity and specificity were 97.5 and 77.8%, respectively, as compared to TFM, because RDT detect malaria antigens, which persist in peripheral blood after clinical malaria, thus results based on RDT are reported. Weighted pfPR increased from 40% in children aged under 2 years to 61.8% in children aged 6–8 years (odds ratio 2.42, 95% confidence interval (CI) 1.26–4.65), then fell slightly to 49% in those aged 12–15 years. Geometric mean parasite density was 1805.5 parasites/µL (95% CI 1344.6–2424.3) among TFM-positive participants, and it was higher in children aged <5 years at 5092.9/µL (95% CI 2892.7–8966.8) and lower in those aged ≥10 years at 983.8/µL (95% CI 472.7–2047.4; P = 0.001). Weighted pfPR was lower in children residing in sub-regions employing indoor residual spraying (IRS) than in those residing in non-IRS sub-regions (32.8 versus 65.7%; OR 0.26, 95% CI 0.14, 0.46). However, pfPR varied both within IRS (3.2–55.3%) and non-IRS sub-regions (29.8–75.8%; Pheterogeneity <0.001). pfPR was inversely correlated with a child’s mother’s income (P = 0.011) and positively correlated with being enrolled in the wet season (P = 0.076), but sex was irrelevant.ConclusionsThe study observed high but geographically and demographically heterogenous patterns of asymptomatic malaria prevalence among children living in northern Uganda. These results provide important baseline data that will enable precise evaluation of associations between malaria and BL.Electronic supplementary materialThe online version of this article (doi:10.1186/s12936-017-1778-z) contains supplementary material, which is available to authorized users.
BackgroundPlasmodium falciparum (Pf) malaria infection is suspected to cause endemic Burkitt Lymphoma (eBL), but the evidence remains unsettled. An inverse relationship between sickle cell trait (SCT) and eBL, which supports that between malaria and eBL, has been reported before, but in small studies with low power. We investigated this hypothesis in children in a population-based study in northern Uganda using Mendelian Randomization.MethodsMalaria-related polymorphisms (SCT, IL10, IL1A, CD36, SEMA3C, and IFNAR1) were genotyped in 202 eBL cases and 624 controls enrolled during 2010–2015. We modeled associations between genotypes and eBL or malaria using logistic regression.FindingsSCT was associated with decreased risk of eBL (adjusted odds ratio [OR] 0·37, 95% CI 0·21–0·66; p = 0·0003). Decreased risk of eBL was associated with IL10 rs1800896-CT (OR 0·73, 95% CI 0·50–1·07) and -CC genotypes (OR 0·53, 95% CI 0·29–0·95, ptrend = 0·019); IL1A rs2856838-AG (OR 0·56, 95% CI 0·39–0·81) and -AA genotype (OR 0·50, 95% CI 0·28–1·01, ptrend = 0·0016); and SEMA3C rs4461841-CT or -CC genotypes (OR 0·57, 95% CI 0·35–0·93, p = 0·0193). SCT and IL10 rs1800896, IL1A rs2856838, but not SEMA3C rs4461841, polymorphisms were associated with decreased risk of malaria in the controls.InterpretationOur results support a causal effect of malaria infection on eBL.
BackgroundDrug resistance among tuberculosis patients in sub-Saharan Africa is increasing, possibly due to association with HIV infection. We studied drug resistance and HIV infection in a representative sample of 533 smear-positive tuberculosis patients diagnosed in Kampala, Uganda.Methods/Principal FindingsAmong 473 new patients, multidrug resistance was found in 5 (1.1%, 95% CI 0.3–2.5) and resistance to any drug in 57 (12.1%, 9.3–15.3). Among 60 previously treated patients this was 7 (11.7%, 4.8–22.6) and 17 (28.3%; 17.5–41.4), respectively. Of 517 patients with HIV results, 165 (31.9%, 27.9–36.1) tested positive. Neither multidrug (adjusted odds ratio (ORadj) 0.7; 95% CI 0.19–2.6) nor any resistance (ORadj 0.7; 0.43–1.3) was associated with HIV status. Primary resistance to any drug was more common among patients who had worked in health care (ORadj 3.5; 1.0–12.0).Conclusion/SignificanceAnti-tuberculosis drug resistance rates in Kampala are low and not associated with HIV infection, but may be associated with exposure during health care.
Investment in SARS-CoV-2 sequencing in Africa over the past year has led to a major increase in the number of sequences generated, now exceeding 100,000 genomes, used to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence domestically, and highlight that local sequencing enables faster turnaround time and more regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and shed light on the distinct dispersal dynamics of Variants of Concern, particularly Alpha, Beta, Delta, and Omicron, on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve, while the continent faces many emerging and re-emerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century.
Background Mycobacterium tuberculosis (Mtb) is reported to infect about a third of the world’s population but only 10 % are thought to develop active tuberculosis (TB) disease. Host immunity regulated by human leukocyte antigens (HLA) is an important determinant of the outcome of the disease. Here we investigate HLA class II gene polymorphisms in susceptibility to TB, and whether particular HLA class II alleles were associated with TB in Uganda.MethodsHIV negative patients with pulmonary TB (n = 43) and genetically related healthy household controls (n = 42) were typed for their HLA II class alleles using polymerase chain reaction sequence specific primer amplification.ResultsThe HLA-DQB1*03:03 allele was significantly less frequent in patients compared to healthy controls (10 % in controls versus 0 % in patients, p = 0.003). After correction for multiple comparisons the difference remained significant (p = 0.018).ConclusionsOur results suggest that the HLA-DQB1*03:03 allele may be associated with resistance to TB.Electronic supplementary materialThe online version of this article (doi:10.1186/s12879-016-1346-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.