For formative goals, more clarity is needed about the aim of providing patient assessments feedback to individual doctors: 'who' should do it and 'how' to do so to best effect. We need to know whether feedback improves doctor performance and how these evaluations correlate with other physician attributes. For summative purposes more research is required on validity and reliability.
Mechanical loading, a potent stimulator of bone formation, is governed by osteocyte regulation of osteoblasts. We developed a three-dimensional (3D) in vitro co-culture system to investigate the effect of loading on osteocyte–osteoblast interactions. MLO-Y4 cells were embedded in type I collagen gels and MC3T3-E1(14) or MG63 cells layered on top. Ethidium homodimer staining of 3D co-cultures showed 100% osteoblasts and 86% osteocytes were viable after 7 days. Microscopy revealed osteoblasts and osteocytes maintain their respective ovoid/pyriform and dendritic morphologies in 3D co-cultures. Reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) of messenger ribonucleic acid (mRNA) extracted separately from osteoblasts and osteocytes, showed that podoplanin (E11), osteocalcin, and runt-related transcription factor 2 mRNAs were expressed in both cell types. Type I collagen (Col1a1) mRNA expression was higher in osteoblasts (P < 0.001), whereas, alkaline phosphatase mRNA was higher in osteocytes (P = 0.001). Immunohistochemistry revealed osteoblasts and osteocytes express E11, type I pro-collagen, and connexin 43 proteins. In preliminary experiments to assess osteogenic responses, co-cultures were treated with human recombinant bone morphogenetic protein 2 (BMP-2) or mechanical loading using a custom built loading device. BMP-2 treatment significantly increased osteoblast Col1a1 mRNA synthesis (P = 0.031) in MLO-Y4/MG63 co-cultures after 5 days treatment. A 16-well silicone plate, loaded (5 min, 10 Hz, 2.5 N) to induce 4000–4500 με cyclic compression within gels increased prostaglandin E2 (PGE2) release 0.5 h post-load in MLO-Y4 cells pre-cultured in 3D collagen gels for 48, 72 h, or 7 days. Mechanical loading of 3D co-cultures increased type I pro-collagen release 1 and 5 days later. These methods reveal a new osteocyte–osteoblast co-culture model that may be useful for investigating mechanically induced osteocyte control of osteoblast bone formation.
Aims-To evaluate the eVect of the administration of growth hormone on stature, body weight, and body composition in children aged between 4 and 10 years with Prader-Willi syndrome. Methods-Height, weight, and skinfold thickness were recorded in 25 children using standard anthropometric techniques at recruitment, and six months later, shortly before the start of daily subcutaneous injections of growth hormone. Body composition was assessed via a measurement of total body water using stable isotopes. Measurements were repeated at the end of the six months of growth hormone administration. Measurements of height, weight, and skinfold thickness were expressed as standard deviation scores (SDSs). Results-There was a significant reduction in the percentage of body fat after growth hormone treatment; height velocity doubled during treatment; body weight did not change significantly when expressed as an SDS. Skinfold thickness at both the triceps and subscapular site decreased in absolute terms and when expressed as an SDS. Conclusions-These results indicate suYcient potential benefit to justify a more prolonged trial of growth hormone treatment and an exploration of diVerent dosage regimens in children with PraderWilli syndrome. (Arch Dis Child 1998;78:474-476)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.