The pallidal volume and the FA-RTC may be used to evaluate longitudinal fatigue severity variation. Our study proposes new biomarkers to monitor fatigue severity in MS patients.
BACKGROUND AND PURPOSE: Fingolimod has a favorable effect on conventional MRI measures; however, its neuroprotective effect is not clear. We aim to investigate changes of conventional and advanced MRI measures in lesions and normal-appearing white matter (NAWM) over 2 years in fingolimod-treated patients. METHODS: Fifty relapsing-remitting multiple sclerosis patients and 27 healthy controls were enrolled in the study and underwent baseline, 1-year, and 2-year 3T MRI scans. T2 lesion volume, whole brain volume, cortical gray matter volume, white matter volume, corpus callosum area, percentage brain volume change (PBVC), Expanded Disability Status Scale, gadoliniumenhancing lesions, PBVC, magnetization transfer ratio (MTR), and diffusion tensor imaging metrics (fractional anisotropy [FA] and median diffusivity [MD]) in lesions and NAWM were calculated. Longitudinal changes were examined using one-way repeated measures ANOVA. Bonferroni correction for multiple testing was used when appropriate. RESULTS: Conventional MRI measures were unchanged in both groups. Lesion MTR increased significantly (P < .001), but NAWM-MTR remained unchanged. Lesion FA improved significantly in year 1 (P = .003) and over the study duration (P = .05). Lesion MD changed significantly from baseline to year 1 (P < .001) and remained stable over 2 years. NAWM-FA was significant from baseline to year 1 (P = .002) and from baseline to year 2 (P < .001). NAWM-MD was significant only from baseline to year 1 (P = .001). CONCLUSIONS: These findings suggest a possible neuroreparative effect of fingolimod on the MS lesions and NAWM. Larger and longer randomized studies are required to confirm these results.
Few cross-sectional studies have investigated the correlation between neurochemical changes and multiple sclerosis (MS) fatigue, but little is known on the fatigue-related white matter differences between time points. We aim to investigate the longitudinal neurometabolite profile of white matter in MS fatigue. Forty-eight relapsing remitting multiple sclerosis (RRMS) patients with an expanded disability status scale (EDSS) ≤ 4 underwent high field 1H-multivoxel magnetic resonance spectroscopy (MRS) at baseline and year 1. Fatigue severity was evaluated by the fatigue severity scale (FSS). Patients were divided into low (LF, FSS ≤ 3), moderate (MF, FSS = 3.1–5), and high fatigue (HF, FSS ≥ 5.1) groups. In a two-way analysis of variance (ANOVA), we observed a decline in the ratio of the sum of N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) to the sum of creatine (Cr) and phosphocreatine (PCr) in the right anterior quadrant (RAQ) and left anterior quadrant (LAQ) of the MRS grid in the HF group at baseline and year 1. This decline was significant when compared with the LF group (p = 0.018 and 0.020). In a one-way ANOVA, the fatigue group effect was significant and the ratio difference in the right posterior quadrant (RPQ) and left posterior quadrant (LPQ) of the HF group was also significant (p = 0.012 and 0.04). Neurochemical changes in the bilateral frontal white matter and possibly parietooccipital areas were noted in the HF group at two different time points. Our findings may shed some light on the pathology of MS fatigue.
Purpose: To examine the optical coherence tomography (OCT) features of the retina in patients with chronic relapsing inflammatory optic neuropathy (CRION) and compare them with those of neuromyelitis optica spectrum disorder (NMOSD), relapsing-remitting multiple sclerosis (RRMS) with and without optic neuritis (ON), and healthy controls (HC). Methods: In this retrospective cross-sectional study, we used spectral domain OCT to evaluate the retinal structure of 14 participants with CRION, 22 with NMOSD, 40 with RRMS with unilateral ON, and 20 HC. The peripapillary retinal nerve fiber layer (pRNFL), total macular volume (TMV), and papillomacular bundle (PMB) were measured, and intra-retinal segmentation was performed to obtain the retinal nerve fiber (RNFL), ganglion cell (GCL), inner plexiform (IPL), inner nuclear (INL), outer plexiform (OPL) and outer nuclear (ONL) layer volumes. Results: The global pRNFL [39.33(±1.8) µm] and all its quadrants are significantly thinner in CRION compared with all other groups (p < 0.05). CRION patients have decreased volumes of TMV, RNFL, GCL, and IPL compared with all other groups (p < 0.05). Conclusion: Severe thinning in pRNFL and thinning in intra-retinal segments of IPL, GCL, RNFL, and TMV could be helpful in differentiating CRION from NMOSD and RRMS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.