Abstract-The web today is increasingly characterized by social and real-time signals, which we believe represent two frontiers in information retrieval. In this paper, we present Earlybird, the core retrieval engine that powers Twitter's realtime search service. Although Earlybird builds and maintains inverted indexes like nearly all modern retrieval engines, its index structures differ from those built to support traditional web search. We describe these differences and present the rationale behind our design. A key requirement of real-time search is the ability to ingest content rapidly and make it searchable immediately, while concurrently supporting low-latency, highthroughput query evaluation. These demands are met with a single-writer, multiple-reader concurrency model and the targeted use of memory barriers. Earlybird represents a point in the design space of real-time search engines that has worked well for Twitter's needs. By sharing our experiences, we hope to spur additional interest and innovation in this exciting space.
Reliability analysis for a logic circuit is one of the primary tasks in fault-tolerant logic synthesis. Given a fault model, it quantifies the impact of faults on the full-chip fault rate. We present RALF, an exact algorithm for calculating the reliability of a logic circuit. RALF is based on the compilation of a circuit to deterministic decomposable negation normal form (d-DNNF), a representation for Boolean formulas that can be more succinct than BDDs. Our algorithm can solve a large set of MCNC benchmark circuits within 5 minutes, enabling an optimality study of Monte Carlo simulation, a popular estimation method for reliability analysis, on real benchmark circuits. Our study shows that Monte Carlo simulation with a small set of random vectors generally has a high fidelity for the computation of full-chip fault rates and the criticality of single gates. While we focus on reliability analysis, RALF can also be used to efficiently locate random pattern resistant faults. This can be used to identify where methods other than random simulation should be used for accurate criticality calculations and where to enhance the testability of a circuit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.