The eotaxin chemokines have been implicated in allergen-induced eosinophil responses in the lung. However, the individual and combined contribution of each of the individual eotaxins is not well defined. We aimed to examine the consequences of genetically ablating eotaxin-1 or eotaxin-2 alone, eotaxin-1 and eotaxin-2 together, and CCR3. Mice carrying targeted deletions of these individual or combined genes were subjected to an OVA-induced experimental asthma model. Analysis of airway (luminal) eosinophilia revealed a dominant role for eotaxin-2 and a synergistic reduction in eotaxin-1/2 double-deficient (DKO) and CCR3-deficient mice. Examination of pulmonary tissue eosinophilia revealed a modest role for individually ablated eotaxin-1 or eotaxin-2. However, eotaxin-1/2 DKO mice had a marked decrease in tissue eosinophilia approaching the low levels seen in CCR3-deficient mice. Notably, the organized accumulation of eosinophils in the peribronchial and perivascular regions of allergen-challenged wild-type mice was lost in eotaxin-1/2 DKO and CCR3-deficient mice. Mechanistic analysis revealed distinct expression of eotaxin-2 in bronchoalveolar lavage fluid cells consistent with macrophages. Taken together, these results provide definitive evidence for a fundamental role of the eotaxin/CCR3 pathway in eosinophil recruitment in experimental asthma. These results imply that successful blockade of Ag-induced pulmonary eosinophilia will require antagonism of multiple CCR3 ligands.
Although eosinophils have been implicated in the pathogenesis of gastrointestinal disorders, their function has not been established. Using a murine model of oral antigen-induced eosinophil-associated gastrointestinal disease, we report the pathological consequences of eosinophilic inflammation and the involvement of eotaxin and eosinophils. Exposure of mice to enteric-coated antigen promotes an extensive T helper 2-associated eosinophilic inflammatory response involving the esophagus, stomach, small intestine and Peyer's patches as well as the development of gastric dysmotility, gastromegaly and cachexia. Electron microscopy shows eosinophils in proximity to damaged axons, which indicated that eosinophils were mediating a pathologic response. In addition, mice deficient in eotaxin have impaired eosinophil recruitment and are protected from gastromegaly and cachexia. These results establish a critical pathological function for eotaxin and eosinophils in gastrointestinal allergic hypersensitivity.
Pulmonary eosinophilia, a hallmark pathologic feature of allergic lung disease, is regulated by interleukin-13 (IL-13) as well as the eotaxin chemokines, but the specific role of these cytokines and their cooperative interaction are only partially understood. First, we elucidated the essential role of IL-13 in the induction of the eotaxins by comparing IL-13 gene-targeted mice with wild type control mice by using an ovalbumin-induced model of allergic airway inflammation. Notably, ovalbumin-induced expressions of eotaxin-1 and eotaxin-2 mRNA in the lungs were almost completely dependent upon IL-13. Second, in order to address the specific role of eotaxin-2 in IL-13-induced pulmonary eosinophilia, we generated eotaxin-2 gene-deficient mice by homologous recombination. Notably, in contrast to observations made in eotaxin-1-deficient mice, eotaxin-2-deficient mice had normal base-line eosinophil levels in the hematopoietic tissues and gastrointestinal tract. However, following intratracheal IL-13 administration, eotaxin-2-deficient mice showed a profound reduction in airway eosinophilia compared with wild type mice. Most interestingly, the level of peribronchial lung tissue eosinophils in IL-13-treated eotaxin-2-deficient mice was indistinguishable from wild type mice. Furthermore, IL-13 lung transgenic mice genetically engineered to be deficient in eotaxin-2 had a marked reduction of luminal eosinophils. Mechanistic analysis identified IL-13-induced eotaxin-2 expression by macrophages in a distinct lung compartment (luminal inflammatory cells) compared with eotaxin-1, which was expressed solely in the tissue. Taken together, these results demonstrate a cooperative mechanism between IL-13 and eotaxin-2. In particular, IL-13 mediates allergen-induced eotaxin-2 expression, and eotaxin-2 mediates IL-13-induced airway eosinophilia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.