The black marlin (Istiompax indica) is a highly migratory billfish that occupies waters throughout the tropical and subtropical Indo-Pacific. To characterize the vertical habitat use of I. indica, we examined the temperature-depth profiles collected using 102 pop-up satellite archival tags deployed off the east coast of Australia. Modelling of environmental variables revealed location, sea-surface height deviation, mixed layer depth and dissolved oxygen to all be significant predictors of vertical habitat use. Distinct differences in diel movements were observed between the size classes, with larger size classes of marlin (greater than 50 kg) undertaking predictable bounce-diving activity during daylight hours, while diving behaviour of the smallest size class occurred randomly during both day and night. Overall, larger size classes of I. indica were found to use an increased thermal range and spend more time in waters below 150 m than fish of smaller size classes. The differences in the diving behaviour among size classes were suggested to reflect ontogenetic differences in foraging behaviour or physiology. The findings of this study demonstrate, for the first time to our knowledge, ontogenetic differences in vertical habitat in a species of billfish, and further the understanding of pelagic fish ecophysiology in the presence of global environmental change.
Background and aim: Billfish are epipelagic marine predators facing increasing pressures such as overfishing and rising global temperatures. Overfishing is a major concern, as they are caught by industrial longline fishers targeting tuna. Billfish are targeted by multiple fishing sectors, which provides food, socio-economic and cultural benefits. To support effective billfish management and conservation, it is essential to understand their spatial distribution and the environmental factors that may influence it. Location:The focus of this study is the Indian Ocean (IO), where there are gaps in understanding the interactions between fisheries and billfish distribution. Three of six billfish species are at risk from overfishing. Therefore, determining their distribution is crucial to their management and conservation.Methods: Using Ocean Biogeographic Information System (OBIS) occurrence data, Indian Ocean Tuna Commission (IOTC) catch data, and environmental covariates, we applied species distribution models to investigate the spatial extent of the realized niches of six billfish species in the IO. We also determined the role and relative importance of environmental drivers. Moreover, we evaluated the association between species' spatial distribution and the fishing effort distribution. Results:We found niche partitioning and overlap among the six species identified spatial distribution, with higher species richness in the northern region of the IO and off the East coast of Africa. Temperature, mixed layer depth and salinity were identified as the most important predictors of species distribution, with moderately warm and stable environments preferred by most billfish species. Areas with high species richness and high fishing effort overlap were primarily found in the Areas Beyond National Jurisdiction (ABNJ). In contrast, areas with high species diversity richness and low fishing effort were found mainly in the Exclusive Economic Zone (EEZ). Main conclusion: Spatial overlap between fishing effort and billfish projected distribution suggests inadvertent fishing pressure on billfish populations as they are caught together with targeted tuna. Spatial distribution transcends maritime zones, | 1555 THOYA eT Al.
Vast distances and permeable phylogeographic barriers characterize the open ocean, boosting gene flow and decreasing population structure and speciation of widely distributed and migratory species. However, many widely distributed species are formed by different populations throughout their distribution, evidencing our understanding of how the marine environment triggers population and species differentiation are insufficient. The sailfish is a circumtropical and highly migratory billfish that inhabits warm and productive areas. Despite its ecological and socioeconomic importance as a predator and fishery resource, the species is threatened by overfishing requiring innovative approaches to improve their management and conservation status. Thus, we presented an improved high-quality reference genome for the species and applied a seascape genomics approach to understand how marine environmental features may promote local adaptation and how it affects gene flow between populations. We delimit 2 populations between the Atlantic and Indo-Western Pacific oceans and detect 82 outlier loci correlated with sea surface temperature, salinity, oxygen, and chlorophyll concentrations. However, the most significant environmental feature that explains the differences between populations was isolation-by-distance. Sailfish populations were not inbred, although its genome-wide heterozygosity was lower for billfishes and marine fishes, evidencing the need to counteract overfishing effects. In addition, in a climate change scenario, management agencies must implement state-of-the-art sequencing methods, consider our findings in their management plans, and monitor genome-wide heterozygosity over time to improve sustainable fisheries and the long-term viability of its populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.