The traffic signal recognition model plays a significant role in the intelligent transportation model, as traffic signals aid the drivers to driving the more professional with awareness. The primary goal of this paper is to proposea model that works for the recognition and detection of traffic signals. This work proposes the pre-processing and segmentation approach applying machine learning techniques are occurred recent trends of study. Initially, the median filter & histogram equalization technique is utilized for pre-processing the traffic signal images, and also information of the figures being increased. The contrast of the figures upgraded, and information about the color shape of traffic signals are applied by the model. To localize the traffic signal in the obtained image, then this region of interest in traffic signal figures are extracted. The traffic signal recognition and classification experiments are managed depending on the German Traffic Signal Recognition Benchmark-(GTSRB). Various machine learning techniques such as Support Vector Machine (SVM), Extreme Learning Machine (ELM), Linear Discriminant Analysis (LDA), Principal Component Analysis (PCA), Convolutional neural network (CNN)- General Regression Neural Network (GRNN) is used for the classification process. Finally, the obtained results will be compare in terms of the performance metrics like accuracy, F1 score, kappa score, jaccard score, sensitivity, specificity, recall, and precision. The result shows that CNN-GRNN with ML techniques by attaining 99.41% accuracy compare to other intelligent methods. In this proposed technique is used for detecting and classifying various categories of traffic signals to improve the accuracy and effectiveness of the system.
Image enhancement is one of the most critical stages towards any image processing application. The outcome of image enhancement determines the accuracy and precise nature of the overall output from the image processing under interest. This research paper has shown specific interests towards enhancement of Scanned Electron Microscopic (SEM) images which are primarily concerned with projection of fine details exist in internal details of surfaces, metals, fine powders, fibers etc. These fine details play a dominant role in detection of minute cracks, artifacts, progressing faults, texture of powders, their coarseness or fineness, internal details of fibers in forensics. However, due to the image capturing process which is through conventional camera-based models, noise tends to be a major source in degrading or blurring the underlying vital information. A cross neighbor fuzzy filter is a hybrid combination called Hybrid Fuzzy Based Cross Neighbor Filtering (HF-CNF) which is proposed in this research paper in order to minimize impulse and random noise to a great extent also to fine tune the further processing stages. The proposed method has been subjected to extensive analysis by comparison with state of art and recent benchmark methods and superior performance justified in terms of several validation metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.