A novel platform is introduced for simultaneous identification and quantification of new psychoactive substances (NPS) in blood matrix, without the necessity of using authentic reference standards. The instrumentation consisted of gas chromatography (GC) coupled to nitrogen chemiluminescence detection (NCD) and atmospheric pressure chemical ionization quadrupole time-of-flight mass spectrometry (APCI-QTOFMS). In this concept, the GC flow is divided in appropriate proportions between NCD for single-calibrant quantification, utilizing the detector's equimolar response to nitrogen, and QTOFMS for accurate mass-based identification. The principle was proven by analyzing five NPS, bupropion, desoxypipradrol (2-DPMP), mephedrone, methylone, and naphyrone, in sheep blood. The samples were spiked with the analytes post-extraction to avoid recovery considerations at this point. All the NPS studies produced a protonated molecule in APCI resulting in predictable fragmentation with high mass accuracy. The N-equimolarity of quantification by NCD was investigated by using external calibration with the secondary standard caffeine at five concentration levels between 0.17 and 1.7 mg/L in blood matrix as five replicates. The equimolarity was on average 98.7%, and the range of individual equimolarity determinations was 76.7-130.1%. The current analysis platform affords a promising approach to instant simultaneous qualitative and quantitative analysis of drugs in the absence of authentic reference standards, not only in forensic and clinical toxicology but also in other bioanalytical applications.
Gas chromatography coupled to atmospheric pressure chemical ionization quadrupole time-of-flight mass spectrometry (GC-APCI-QTOFMS) was evaluated for the identification of new psychoactive substances (NPS). An in-house high mass resolution GC-APCI-QTOFMS test library was developed for 29 nitrogen-containing drugs belonging mostly to synthetic stimulants. The library was based on 12 intra-day measurements of each compound at three different collision energies, 10, 20 and 40 eV. The in-house library mass spectra were compared to mass spectra from a commercial library constructed by liquid chromatography-electrospray ionization (LC-ESI) QTOFMS. The reversed library search scores between the in-house GC-APCI library and the commercial LC-ESI library were compared once a week during a 5-week period by using data measured by GC-APCI-QTOFMS. The protonated molecule was found for all drugs in the full scan mode, and the drugs were successfully identified by both libraries in the targeted MS/MS mode. The GC-APCI library score averaged over all collision energies was as high as 94.4/100 with a high repeatability, while the LC-ESI library score was also high (89.7/100) with a repeatability only slightly worse. These results highlight the merits of GC-APCI-QTOFMS in the analysis of NPS even in situations where the reference standards are not immediately available, taking advantage of the accurate mass measurement of the protonated molecule and product ions, and comparison to existing soft-ionization mass spectral libraries. Graphical abstract Tandem mass spectra obtained from GC-APCI-QTOFMS are comparable to LC-ESI-QTOFMS library spectra.
A method was developed for quantitative estimation of illicit psychostimulants in blood, with an emphasis on new psychoactive substances, based on gas chromatography nitrogen chemiluminescence detection coupled with atmospheric pressure chemical ionization quadrupole time-of-flight mass spectrometry (GC-NCD-APCI-QTOFMS). Quantitative estimation relied on the NCD’s N-equimolar response to nitrogen, using amphetamine, 3,4-methylenedioxymethamphetamine (MDMA) and methylenedioxypyrovalerone as external calibrators for prim-, sec- and tert- amines, respectively. After spiking with 38 stimulants at 3 concentration levels, the donor blood samples were submitted to liquid–liquid extraction at a basic pH followed by acylation with trifluoroacetic anhydride. All but 3 psychostimulants could be analyzed with a limit of quantification (LOQ) of 0.05 mg/L. At LOQ, the coefficient of variation (CV) values for between-day accuracy was 62.3–143.3% (mean, 93.5%; median, 88.5%) and precision 6.6–22.4% (mean, 15.8%; median, 16.1%). In addition, 11 post-mortem blood samples, containing 0.08–2.4 mg/L of amphetamine (n = 5), methamphetamine (n = 4) or MDMA (n = 4), were analyzed by the GC-NCD-APCI-QTOFMS method, and the results were compared with an established electron ionization GC–MS method with appropriate calibration. The agreement between the 2 methods was 62.5–117.3%. Regarding identification, the APCI source permitted detection of the intact precursor ion, or the respective acylation product, for all of the measured compounds. The GC-NCD-APCI-QTOFMS method developed here enables instant quantitative estimation of illicit psychostimulants in blood at reasonable accuracy, without the necessity of possessing the true reference standards for each analyte.
Gas chromatography (GC) hyphenated with nitrogen chemiluminescence detection (NCD) and quadrupole time-of-flight mass spectrometry (QTOFMS) was applied for the first time to the quantitative analysis of new psychoactive substances (NPS) in urine, based on the N-equimolar response of NCD. A method was developed and validated to estimate the concentrations of three metabolites of the common stimulant NPS α-pyrrolidinovalerophenone (α-PVP) in spiked urine samples, simulating an analysis having no authentic reference standards for the metabolites and using the parent drug instead for quantitative calibration. The metabolites studied were OH-α-PVP (M1), 2″-oxo-α-PVP (M3), and N,N-bis-dealkyl-PVP (2-amino-1-phenylpentan-1-one; M5). Sample preparation involved liquid-liquid extraction with a mixture of ethyl acetate and butyl chloride at a basic pH and subsequent silylation of the sec-hydroxyl and prim-amino groups of M1 and M5, respectively. Simultaneous compound identification was based on the accurate masses of the protonated molecules for each compound by QTOFMS following atmospheric pressure chemical ionization. The accuracy of quantification of the parent-calibrated NCD method was compared with that of the corresponding parent-calibrated QTOFMS method, as well as with a reference QTOFMS method calibrated with the authentic reference standards. The NCD method produced an equally good accuracy to the reference method for α-PVP, M3 and M5, while a higher negative bias (25%) was obtained for M1, best explainable by recovery and stability issues. The performance of the parent-calibrated QTOFMS method was inferior to the reference method with an especially high negative bias (60%) for M1. The NCD method enabled better quantitative precision than the QTOFMS methods To evaluate the novel approach in casework, twenty post- mortem urine samples previously found positive for α-PVP were analyzed by the parent calibrated NCD method and the reference QTOFMS method. The highest difference in the quantitative results between the two methods was only 33%, and the NCD method's precision as the coefficient of variation was better than 13%. The limit of quantification for the NCD method was approximately 0.25μg/mL in urine, which generally allowed the analysis of α-PVP and the main metabolite M1. However, the sensitivity was not sufficient for the low concentrations of M3 and M5. Consequently, while having potential for instant analysis of NPS and metabolites in moderate concentrations without reference standards, the NCD method should be further developed for improved sensitivity to be more generally applicable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.