We construct the Green-Schwarz terms of six-dimensional supergravity theories on spacetimes with non-trivial topology and gauge bundle. We prove the cancellation of all global gauge and gravitational anomalies for theories with gauge groups given by products of U pnq, SU pnq and Sppnq factors, as well as for E 8 . For other gauge groups, anomaly cancellation is equivalent to the triviality of a certain 7-dimensional spin topological field theory. We show in the case of a finite Abelian gauge group that there are residual global anomalies imposing constraints on the 6d supergravity. These constraints are compatible with the known F-theory models. Interestingly, our construction requires that the gravitational anomaly coefficient of the 6d supergravity theory is a characteristic element of the lattice of string charges, a fact true in six-dimensional F-theory compactifications but that until now was lacking a low-energy explanation. We also discover a new anomaly coefficient associated with a torsion characteristic class in theories with a disconnected gauge group.
We obtain new constraints on the anomaly coefficients of 6D N = (1, 0) supergravity theories using local and global anomaly cancellation conditions. We show how these constraints can be strengthened if we assume that the theory is well-defined on any spin space-time with an arbitrary gauge bundle. We distinguish the constraints depending on the gauge algebra only from those depending on the global structure of the gauge group. Our main constraint states that the coefficients of the anomaly polynomial for the gauge group G should be an element of 2H 4 (BG; Z) ⊗ Λ S where Λ S is the unimodular string charge lattice. We show that the constraints in their strongest form are realized in F-theory compactifications. In the process, we identify the cocharacter lattice, which determines the global structure of the gauge group, within the homology lattice of the compactification manifold.
We construct invertible field theories generalizing abelian prequantum spin Chern-Simons theory to manifolds of dimension 4k+3 endowed with a Wu structure of degree 2k+2. After analysing the anomalies of a certain discrete symmetry, we gauge it, producing topological field theories whose path integral reduces to a finite sum, akin to Dijkgraaf-Witten theories. We take a general point of view where the Chern-Simons gauge group and its couplings are encoded in a local system of integral lattices. The Lagrangian of these theories has to be interpreted as a class in a generalized cohomology theory in order to obtain a gauge invariant action. We develop a computationally friendly cochain model for this generalized cohomology and use it in a detailed study of the properties of the Wu Chern-Simons action. In the three-dimensional spin case, the latter provides a definition of the "fermionic correction" introduced recently in the literature on fermionic symmetry protected topological phases. In order to construct the state space of the gauged theories, we develop an analogue of geometric quantization for finite abelian groups endowed with a skew-symmetric pairing. The physical motivation for this work comes from the fact that in the k = 1 case, the gauged 7-dimensional topological field theories constructed here are essentially the anomaly field theories of the 6-dimensional conformal field theories with (2,0) supersymmetry, as will be discussed elsewhere.Comment: 113 page
In this work, we determine explicitly the anomaly line bundle of the abelian self-dual field theory over the space of metrics modulo diffeomorphisms, including its torsion part. Inspired by the work of Belov and Moore, we propose a non-covariant action principle for a pair of Euclidean self-dual fields on a generic oriented Riemannian manifold. The corresponding path integral allows one to study the global properties of the partition function over the space of metrics modulo diffeomorphisms. We show that the anomaly bundle for a pair of self-dual fields differs from the determinant bundle of the Dirac operator coupled to chiral spinors by a flat bundle that is not trivial if the underlying manifold has middle-degree cohomology, and whose holonomies are determined explicitly. We briefly sketch the relevance of this result for the computation of the global gravitational anomaly of the self-dual field theory, that will appear in another paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.