Recent advances on wireless energy transfer (WET) make it a promising solution for powering future Internet-of-Things (IoT) devices enabled by the upcoming sixth-generation (6G) era. The main architectures, challenges and techniques for efficient and scalable wireless powering are overviewed in this article. Candidates enablers, such as energy beamforming (EB), distributed antenna systems (DASs), advances on devices' hardware and programmable medium, new spectrum opportunities, resource scheduling, and distributed ledger technology are outlined. Special emphasis is placed on discussing the suitability of channel state information (CSI)-limited/free strategies when powering simultaneously a massive number of devices. The benefits from combining DAS and EB, and from using average CSI whenever available, are numerically illustrated. The pros and cons of the state-of-the-art CSI-free WET techniques in ultralow power setups are thoroughly revised, and some possible future enhancements are outlined. Finally, key research directions toward realizing WET-enabled massive IoT networks in the 6G era are identified and discussed in detail. Index Terms-Channel state information (CSI), distributed antenna systems (DASs), distributed ledger technology (DLT), energy beamforming (EB), intelligent reflective surfaces, Internet of Things (IoT), massive wireless energy transfer (WET), millimeter wave, sixth generation (6G), ultralow power. I. INTRODUCTION T HE SIXTH generation (6G) of wireless systems targets a data-driven sustainable society, enabled by nearinstant, secure, unlimited and green connectivity [1]-[3]. Stringent performance requirements in terms of security and
Wireless Energy Transfer (WET) is emerging as a potential solution for powering small energy-efficient devices. We propose strategies that use multiple antennas at a power station, which wirelessly charges a large set of single-antenna devices. Proposed strategies operate without Channel State Information (CSI) and we attain the distribution and main statistics of the harvested energy under Rician fading channels with sensitivity and saturation energy harvesting (EH) impairments. A switching antenna strategy, where a single antenna with full power transmits at a time, provides the most predictable energy source, and it is particularly suitable for powering sensor nodes with highly sensitive EH hardware operating under non-LOS (NLOS) conditions; while other WET schemes perform alike or better in terms of the average harvested energy. Under NLOS switching antennas is the best, while when LOS increases transmitting simultaneously with equal power in all antennas is the most beneficial. Moreover, spatial correlation is not beneficial unless the power station transmits simultaneously through all antennas, raising a trade-off between average and variance of the harvested energy since both metrics increase with the spatial correlation. Moreover, the performance gap between CSI-free and CSI-based strategies decreases quickly as the number of devices increases.
Radio Frequency Wireless Energy Transfer (RF-WET) is emerging as a potential green enabler for massive Internet of Things (IoT). Herein, we analyze Channel State Information (CSI)-free multi-antenna strategies for powering wirelessly a large set of single-antenna IoT devices. The CSI-free schemes are AA − SS (AA − IS), where all antennas transmit the same (independent) signal(s), and SA, where just one antenna transmits at a time such that all antennas are utilized during the coherence block. We characterize the distribution of the provided energy under correlated Rician fading for each scheme and find out that while AA − IS and SA cannot take advantage of the multiple antennas to improve the average provided energy, its dispersion can be significantly reduced. Meanwhile, AA − SS provides the greatest average energy, but also the greatest energy dispersion, and the gains depend critically on the mean phase shifts between the antenna elements. We find that consecutive antennas must be π phase-shifted for optimum average energy performance under AA − SS. Our numerical results evidence that correlation is beneficial under AA − SS, while a greater line of sight (LOS) and/or number of antennas is not always beneficial under such scheme. Meanwhile, both AA − IS and SA schemes benefit from small correlation, large LOS and/or large number of antennas. Finally, AA − SS (SA and AA − IS) is (are) preferable when devices are (are not) clustered in specific spatial directions.
Biocontrol of Rhizoctonia solani in tomatoes cultivated under greenhouse and field conditions was analyzed using the Trichoderma harzianum mutants Th650-NG7, Th11A80.1, Th12A40.1, Th12C40.1 and Th12A10.1 and ThF2-1, respectively. Their innocuousness on tomato cultivars 92.95 and Gondola (greenhouse assays), and on cultivar Fortaleza (field assays) was established. Alginate pellets (1.7 g pellets/L soil) containing c.a1 x 10 5 colony forming units (cfu)/g pellet were applied to a soil previously inoculated with R. solani at transplant (greenhouse) or to a naturally infected soil (field). *Corresponding authorControls considered parental wild strains, a chemical fungicide and no additions. Th11A 80.1, Th12A10.1 and Th650-NG7 prevented the 100% mortality of tomato plants cv. 92.95 caused by R. solani, and the 40% mortality in tomato plants cv. Gondola (greenhouse assays). Mortality reduction was reflected in canker level lessening and in plant parameters increases (development, fresh and dry weights). A different degree of susceptibility of tomato plants was observed, being Gondola cv. more resistant than 92.95 cv. to infection in a soil previously inoculated with R. solani.
This paper proposes two solutions based on angle diversity receivers (ADRs) to mitigate inter-cell interference (ICI) in underground mining visible light communication (VLC) systems, one of them is a novel approach. A realistic VLC system based on two underground mining scenarios, termed as mining roadway and mine working face, is developed and modeled. A channel model based on the direct component in line-of-sight (LoS) and reflections of non-line-of-sight (NLoS) links is considered, as well as thermal and shot noises. The design and mathematical models of a pyramid distribution and a new hemi-dodecahedral distribution are addressed in detail. The performances of these approaches, accompanied by signal combining schemes, are evaluated with the baseline of a single photo-diode in reception. Results show that the minimum lighting standards established in both scenarios are met. As expected, the root-mean-square delay spread decreases as the distance between the transmitters and receivers increases. Furthermore, the hemi-dodecahedron ADR in conjunction with the maximum ratio combining (MRC) scheme, presents the best performance in the evaluated VLC system, with a maximum user data rate of 250 Mbps in mining roadway and 120 Mbps in mine working face, received energy per bit/noise power of 32 dB and 23 dB, respectively, when the bit error rate corresponds to 10 − 4 , and finally, values of 120 dB in mining roadway and 118 dB in mine working face for signal-to-interference-plus-noise ratio are observed in a cumulative distribution function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.