This article presents a comprehensive review on the feasibility and challenges of millimeter wave in emerging fifth generation (5G) mobile communication. 5G, a multigigabit wireless network is the next generation wireless communication network. The mmWave cellular system which operates in the 30-300 GHz band has been proposed for use as the propagation channel. Its large bandwidth potential makes it a candidate for the next-generation wireless communication system which is believed to support data rates of multiple Gb/s. High frequency bands such as mmWave have channel impairments. These impairments are challenges that are necessary to be properly understood. Employing mmWave as a propagation channel requires dealing with these challenges which this paper is aimed at reviewing. One aim of the work is to discuss these challenges in a more elaborate manner using simple mathematical equations and graphics to ensure clarity. To achieve this, current related works were studied. Challenges and solutions are identified and discussed. Suggested research directions for future work are also presented. One is developing suitable electronic such as fast analog-to-digital (ADC) and digital-to-analog (DAC) systems necessary for the transmitter/receiver (TX/RX) system.
This paper presents an improved hybrid Equal Gain Combiner-Maximal Ratio Combiner (EGC-MRC) diversity scheme in 5G millimeter wave (mm-wave) frequency. The term 5G mm-wave refers to the radio frequency spectrum between 24 and 100. The signal interference is a challenging task in 5G mm-wave frequency, and radio network suffer from co-channel and adjacent channel interference. 5G network deployment depends on large number of antennas, which resulted in signal interference. The conventional receiver's diversity techniques have high hardware complexity and are characterized by low performance. A new hybrid EGC-MRC diversity scheme was proposed as an improvement on the performance of existing MRC scheme. In achieving this, Probability Density Function (PDF) of the hybrid model was derived using the instantaneous Signal-to-Noise Ratio (SNR) obtained from the output of MRC and EGC diversity schemes. The performance of the developed model was evaluated using Outage Probability () and Processing time () at different SNR with number of paths. Simulation of the MRC, EGC and hybrid EGC-MRC models were carried out using MATLAB 2018a and the results compared. The output results showed that hybrid EGC-MRC performed better than EGC and MRC by having a lower and. This new model has the potential to mitigate network interference, multipath propagation, and hardware complexity in 5G mm-wave frequency. Therefore, the developed model can be deployed by network operators to solve signal interference in 5G network.
The design of a power pool scheme for demand-side management of co-located banks in Owerri metropolis, Nigeria has been carried out in this work. The paper addressed the problem of matching instantaneous load demand with appropriate generator capacities which results from dynamic nature of small and medium scale industrial load, such as co-located banks. It also aimed at proffering solutions to health and environmental problems associated with use of scattered single generators per firm. A model for interconnection of generators and loads in a pool structure was developed to form a ring network, analogous to a typical power system. One of the generators in the pool was chosen as the slack bus and the other generators and load buses were arranged in the power pool arrangement such that Newton-Raphson's method could be applied in load flow analysis. With this modeling and application of appropriate schedule, a cooperative pooling model was developed such that only the exact generating capacities were deployed. The proposed model was simulated by paralleling three 200kVA generator units in a synchronized ring network to serve the entire five banks. Results from the load flow analysis showed that the per unit voltage magnitudes at buses 1, 2, 3, 4 and 5 were 1.000, 0.997, 1.000, 0.998 and 1.000 respectively, while voltage mismatch angles (degree) were also gotten as 0.000, 0.003, 0.024, 0.060 and 0.086 respectively for the buses 1 to 5. From the cost benefit analysis carried out, the benefit-cost ratio (BCR) of 1.965 was calculated, which showed that this project will be very beneficial to the cooperating banks. Scheduling the operations of the three generators using mathematical permutation and combination model showed that the total man-hour of the plant operators is reduced by 40%. Also, applying the greenhouse gases emissions cost model it was found that the carbon footprints i.e. greenhouse cost for the interconnected network is reduced by 40%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.