In response to the global COVID-19 pandemic, this work aims to understand the early time evolution and the spread of the disease outbreak with a data driven approach. To this effect, we applied Susceptible- Infective-Recovered/Removed (SIR) epidemiological model on the disease. Additionally, we used the Machine Learning linear regression model on the historical COVID-19 data to predict the earlier stage of the disease. The evolution of the disease spread with the Mathematical SIR model and Machine Learning regression model for time series forecasting of the COVID-19 data without, and with lags and trends, was able to capture the early spread of the disease. Consequently, we suggest that if using a more advanced epidemiological model, and sophisticated machine learning regression models on the COVID-19 data, we can understand, as well as predict the long time evolution of the disease spread.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.