The growing demand for Global Navigation Satellite System (GNSS) technology has necessitated the establishment of a vast and ever-growing network of International GNSS Service (IGS) tracking stations worldwide. The IGS provides highly accurate and highly reliable daily time-series Zenith Tropospheric Delay (ZTD) products using data from the member sites towards the use of GNSS for precise geodetic, climatological, and meteorological applications. However, if for reasons like poor internet connectivity, equipment failure, and power outages, the IGS station is inaccessible or malfunctioning, and gaps are created in the data archive resulting in degrading the quality of the ZTD and precipitable water vapour (PWV) estimation. To address this challenge as a means of providing an alternative data source to improve the continuous availability of ZTD data and as a backup data in the event that the IGS site data are missing or unavailable in West Africa, this paper compares the sitewise operational Vienna Mapping Functions 3 (VMF3) ZTD product with the IGS final ZTD product over five IGS stations in West Africa. Eight different statistical evaluation metrics, such as the mean bias (MB), mean absolute error (MAE), root mean squared error (RMSE), Pearson correlation coefficient (r), coefficient of determination (r2), refined index of agreement (IAr), Nash–Sutcliffe coefficient of efficiency (NSE), and the fraction of prediction within a factor of two (FAC2), are employed to determine the degree of agreement between the VMF3 and IGS tropospheric products. The results show that the VMF3-ZTD product performed excellently and matches very well with the IGS final ZTD product with an average MB, MAE, RMSE, r, r2, NSE, IAr, and FAC2 of 0.38 cm, 0.87 cm, 1.11 cm, 0.988, 0.976, 0.967, 0.992, and 1.00 (100%), respectively. This result is an indication that the VMF3-ZTD product is accurate enough to be used as an alternative source of ZTD data to augment the IGS final ZTD product for positioning and meteorological applications in West Africa.
In this study, we determined three-dimensional (3D) position coordinates for eight new Continuous Operating Reference Stations (CORS) in Ghana through three different GNSS positioning techniques. The three GNSS positioning techniques whereby the network of CORS was tied to ITRF14 and War Office 1926 datums included:1) Precise Point Positioning (PPP); 2) Precise Differential GNSS (PDGNSS), using reference stations based on ITRF14; and 3) PDGNSS, using reference stations based on War Office. The PPP solutions were computed using the Canadian Spatial Reference System Precise Point Positioning software (CSRS-PPP), available online and as an open source GNSS laboratory tool software (gLAB). The PDGNSS solutions were obtained from OPUS and AUSPOS online services, as well as from self-post-processing using Topcon Tools software v8.2.3. All solutions were computed using 24-hour data for twelve consecutive days in the month of October 2018 (GPS DoY 284 to GPS DoY 295). The quality, reliability, and acceptability of position solutions were measured by computing the average positioning error, the rate of ambiguity resolution and the repeatability ratios of the solutions. The variability of coordinate differences for each pair of different positioning techniques was computed to determine their solution congruences. Ultimately, , the average positioning errors in northing, easting, and height were 0.003m, 0.005m and 0.009m, respectively. The rate of ambiguity resolution was between 75.3% and 90.3%. Repeatability ratios ranged between 1: 68,500,000 and 1: 411,100,000. Finally, the minimum and maximum range of variability in coordinate differences for each pair of positioning techniques was 1mm to 16mm for horizontal positions and 2mm to 137mm for vertical positions.
The impact of the earth’s atmospheric layers, particularly the troposphere on Global Navigation satellite system (GNSS) signals has become a major concern in GNSS accurate positioning, navigation, surveillance and timing applications. For precise GNSS applications, tropospheric delay has to be mitigated as accurately as possible using tropospheric delay prediction models. However, the choice of a particular prediction model can signifi-cantly impair the positioning accuracy particularly when the model does not suit the user’s environment. A performance assessment of these prediction models for a suitable one is very important. In this paper, an assessment study of the performances of five blind tropospheric delay prediction models, the UNB3m, EGNOS, GTrop, GPT2w and GPT3 models was conducted in Ghana over six selected Continuously Operating Reference Stations (CORS) using the 1˚x1˚ gridded Vienna Mapping Function 3 (VMF3) zenith tropospheric delay (ZTD) product as a reference. The gridded VMF3-ZTD which is generated for every six hours on the 1˚x1˚ grids was bilinearly interpolated both space and time and transferred from the grid heights to the respective heights of the CORS locations. The results show that the GPT3 model performed better in estimating the ZTD with an overall mean (bias: 2.05 cm; RMS: 2.53 cm), followed by GPT2w model (bias: 2.32cm; RMS: 2.76cm) and GTrop model (bias: 2.41cm; 2.82cm). UNB3m model (bias: 6.23 cm; RMS: 6.43 cm) and EGNOS model (bias: 6.70 cm; RMS: 6.89 cm) performed poorly. A multiple comparison test (MCT) was further performed on the RMSE of each model to check if there is significant difference at 5% significant level. The results show that the GPT3, GPT2w and GTrop models are significantly indifferent at 5% significance level indicating that either of these models can be employed to mitigate the ZTD in the study area, nevertheless, the choice of GPT3 model will be more preferable.
The ability to precisely and accurately model and predict tropospheric delay is essential for precise global navigation satellite system (GNSS) and meteorological applications. The International GNSS Service (IGS) provides highly accurate and highly reliable daily time series zenith tropospheric delay (ZTD) products for all its member sites using data from each IGS site. Nevertheless, if for reasons such as poor internet connectivity, equipment failure, and power outages the IGS station is inaccessible, gaps are created in the data archive, resulting in degrading the quality of the ZTD estimation, as well as inhibits the quality of precipitable water vapour (PWV) estimation, needed for precise positioning applications, meteorological studies, and weather forecasting. To address this challenge, five regression models are proposed in this study to model and predict daily ZTDs using daily datasets from four IGS stations in West Africa over a period of 5 years (2015)(2016)(2017)(2018)(2019). The site-specific Vienna Mapping Functions 3 (VMF3) products (ZTD, pressure, temperature, water vapour partial pressure) and stations' coordinates (latitudes and longitudes) are used as the predictors, while the IGS final ZTD product as the response variable in fitting the models. Several performance measures are calculated to compare the predictive performance of the models.The results show that the five regression models performed outstandingly and agree very well with the IGS-ZTD data, and hence provide a useful alternative for ZTD predictions and also in the event the West African IGS stations' ZTD data are unavailable. Nonetheless, the support vector regression model outperformed the remaining four models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.