The purpose of this study was to assess the performance of high water content clayey sediments at different liquid limits as the clays are treated with cement-based solidifying materials. Three clay samples are obtained from different locations in the Kumamoto Reservoir. Two types of cement-based solidifying agents, namely, ordinary Portland cement and a cement–fly ash binder, were used. Using the initial water content of clay and the mixing amount of the solidifying agent as experimental variables, a cone penetration test was performed on the solidifying agent-stabilized clays to obtain the cone index (qc). The results showed that when the water content to cementitious content ratio (w/AW) was used as a parameter for evaluating the improvement of solidifying agent-stabilized clay, different forms of improvements were observed when different water and solidifying agent contents were used. This implied that the parameter w/AW was not suitable for evaluating the improvement of such clay. A new parameter, K, representing the content of solidifying agent, was introduced to account for the water content. For all sampled clays, the correlation coefficients for the K–ln qc relationship exceeded 0.9. Considering the effect of the liquid limit of the samples, the modified content of the solidifying agent (KL) was introduced to evaluate the cone index of the stabilized soils. It was discovered that the proposed equation unified the assessment of the improvement of the three samples of Kumamoto clayey sediments owing to the new parameter, KL.
The effective and sustainable treatment of high-water-content waste dredged clay (WDC) remains a significant challenge in water conservancy engineering. In this study, we focused on the treatment of WDC produced by Kumamoto Ohkirihata Reservoir. The study examined the effect of two types of cement-based solidifiers, namely, ordinary Portland cement (OPC) and cement–fly ash agent (DF), on three clay samples collected from different locations. The cone index test was used to assess the samples’ properties. The dosage of cement required for effective improvement with DF was significantly reduced (by about 47–55%), compared to OPC. Moreover, the dewatering efficiency of WDC improved by the simple dewatering method of vertically placing environmental protection materials. Within seven days, the average water content of the WDC decreased to below the liquid limit compared with natural air drying. Finally, the dosage of DF required to stabilize the WDC under effective improvement conditions was reduced by 37–58%, which is higher than the dosage of OPC reduction (22–50%). The reduction in water content reduced the pore space of the soil particles, benefiting the internal bonding of DF-stabilized clay. Dewatering methods facilitate the use of DF solidifiers, facilitating sustainable and environmentally friendly improvement in WDC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.