We consider time-harmonic scattering by penetrable convex polygons, a Helmholtz transmission problem. Standard numerical schemes based on piecewise polynomial approximation spaces become impractical at high frequencies due to the requirement that the number of degrees of freedom in any approximation must grow at least linearly with respect to frequency in order to represent the oscillatory solution. High frequency asymptotic methods on the other hand are non-convergent and may be insufficiently accurate at low to medium frequencies. Here, we design a hybrid numerical-asymptotic boundary element approximation space that combines the best features of both approaches. Specifically, we compute the classical geometrical optics solution using a beam tracing algorithm, and then we approximate the remaining diffracted field using an approximation space enriched with carefully chosen oscillatory basis functions. We demonstrate via numerical simulations that this approach permits the accurate and efficient representation of the boundary solution and the far field pattern.
This paper details the extension of a metric-based anisotropic mesh adaptation strategy to the boundary element method for problems of 3D acoustic wave propagation. Traditional mesh adaptation strategies for boundary element methods rely on Galerkin discretizations of the boundary integral equations, and the development of appropriate error indicators. They often require the solution of further integral equations. These methods utilise the error indicators to mark elements where the error is above a specified tolerance and then refine these elements. Such an approach cannot lead to anisotropic adaptation regardless of how these elements are refined, since the orientation and shape of current elements cannot be modified. In contrast, the method proposed here is independent of the discretization technique (e.g., collocation, Galerkin). Furthermore, it completely remeshes at each refinement step, altering the shape, size, and orientation of each element according to an optimal metric based on a numerically recovered Hessian of the boundary solution. The resulting adaptation procedure is truly anisotropic and independent of the complexity of the geometry. We show via a variety of numerical examples that it recovers optimal convergence rates for domains with geometric singularities. In particular, a faster convergence rate is recovered for scattering problems with complex geometries.
We present a novel hybrid numerical-asymptotic boundary element method for high frequency acoustic and electromagnetic scattering by penetrable (dielectric) convex polygons. Our method is based on a standard reformulation of the associated transmission boundary value problem as a direct boundary integral equation for the unknown Cauchy data, but with a nonstandard numerical discretization which efficiently captures the high frequency oscillatory behaviour. The Cauchy data is represented as a sum of the classical geometrical optics approximation, computed by a beam tracing algorithm, plus a contribution due to diffraction, computed by a Galerkin boundary element method using oscillatory basis functions chosen according to the principles of the Geometrical Theory of Diffraction. We demonstrate with a range of numerical experiments that our boundary element method can achieve a fixed accuracy of approximation using only a relatively small, frequency-independent number of degrees of freedom. Moreover, for the scattering scenarios we consider, the inclusion of the diffraction term provides an order of magnitude improvement in accuracy over the geometrical optics approximation alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.