Abstract. Topological invariants are extremely useful in many applications related to digital imaging and geometric modelling, and homology is a classical one. We present an algorithm that computes the whole homology of an object of arbitrary dimension: Betti numbers, torsion coefficients and generators. Results on classical shapes in algebraic topology are presented and discussed.
a b s t r a c tWe introduce a method for computing homology groups and their generators of a 2D image, using a hierarchical structure, i.e. irregular graph pyramid. Starting from an image, a hierarchy of the image is built by two operations that preserve homology of each region. Instead of computing homology generators in the base where the number of entities (cells) is large, we first reduce the number of cells by a graph pyramid. Then homology generators are computed efficiently on the top level of the pyramid, since the number of cells is small. A top down process is then used to deduce homology generators in any level of the pyramid, including the base level, i.e. the initial image. The produced generators fit on the object boundaries. A unique set of generators called the minimal set, is defined and its computation is discussed. We show that the new method produces valid homology generators and present some experimental results.
In this paper, we present an algorithm which allows to compute eciently generators of the rst homology group of a closed surface, orientable or not. Starting with an initial subdivision of a surface, we simplify it to its minimal form (minimal refers to the number of cells), while preserving its homology. Homology generators can thus be directly deduced from the minimal representation of the initial surface. Finally, we show how this algorithm can be used in a 3D labelled image in order to compute homology of each region described by its boundary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.