We examined the use of near-infrared and red radiation (photobiomodulation, PBM) for treating major depressive disorder (MDD). While still experimental, preliminary data on the use of PBM for brain disorders are promising. PBM is low-cost with potential for wide dissemination; further research on PBM is sorely needed. We found clinical and preclinical studies via PubMed search (2015), using the following keywords: "near-infrared radiation," "NIR," "low-level light therapy," "low-level laser therapy," or "LLLT" plus "depression." We chose clinically focused studies and excluded studies involving near-infrared spectroscopy. In addition, we used PubMed to find articles that examine the link between PBM and relevant biological processes including metabolism, inflammation, oxidative stress, and neurogenesis. Studies suggest the processes aforementioned are potentially effective targets for PBM to treat depression. There is also clinical preliminary evidence suggesting the efficacy of PBM in treating MDD, and comorbid anxiety disorders, suicidal ideation, and traumatic brain injury. Based on the data collected to date, PBM appears to be a promising treatment for depression that is safe and well-tolerated. However, large randomized controlled trials are still needed to establish the safety and effectiveness of this new treatment for MDD.
Transcranial near-infrared radiation (NIR) is an innovative treatment for major depressive disorder (MDD), but clinical evidence for its efficacy is limited. Our objective was to investigate the tolerability and efficacy of NIR in patients with MDD. We conducted a proof of concept, prospective, double-blind, randomized study of 6 sessions of NIR versus sham treatment for patients with MDD, using a crossover design. Four patients with MDD with mean age 47 ± 14 (SD) years (1 woman and 3 men) were exposed to irradiance of 700 mW/cm2 and a fluence of 84 J/cm2 for a total NIR energy of 2.40 kJ delivered per session for 6 sessions. Baseline mean HAM-D17 scores decreased from 19.8 ± 4.4 (SD) to 13 ± 5.35 (SD) after treatment (t = 7.905; df = 3; P = 0.004). Patients tolerated the treatment well without any serious adverse events. These findings confirm and extend the preliminary data on NIR as a novel intervention for patients with MDD, but further clinical trials are needed to better understand the efficacy of this new treatment. This trial is registered with ClinicalTrials.gov NCT01538199.
Objective: Our objective was to test the antidepressant effect of transcranial photobiomodulation (t-PBM) with near-infrared (NIR) light in subjects suffering from major depressive disorder (MDD). Background: t-PBM with NIR light is a new treatment for MDD. NIR light is absorbed by mitochondria; it boosts cerebral metabolism, promotes neuroplasticity, and modulates endogenous opioids, while decreasing inflammation and oxidative stress. Materials and methods: We conducted a double-blind, sham-controlled study on the safety and efficacy (change in Hamilton Depression Rating Scale [HAM-D 17 ] total score at end-point) of adjunct t-PBM NIR [823 nm; continuous wave (CW); 28.7 · 2 cm 2 ; 36.2 mW/cm 2 ; up to 65.2 J/cm 2 ; 20-30 min/session], delivered to dorsolateral prefrontal cortex, bilaterally and simultaneously, twice a week, for 8 weeks, in subjects with MDD. Baseline observation carried forward (BOCF), last observation carried forward (LOCF), and completers analyses were performed. Results: The effect size for the antidepressant effect of t-PBM, based on change in HAM-D 17 total score at endpoint, was 0.90, 0.75, and 1.5 (Cohen's d), respectively for BOCF (n = 21), LOCF (n = 19), and completers (n = 13). Further, t-PBM was fairly well tolerated, with no serious adverse events. Conclusions: t-PBM with NIR light demonstrated antidepressant properties with a medium to large effect size in patients with MDD. Replication is warranted, especially in consideration of the small sample size.
Introduction: Despite the promises of universal health care in most developed countries, health inequities remain prevalent within and between rural and remote communities. Remote health technologies are often promoted as solutions to increase health system efficiency, to enhance quality of care, and to decrease gaps in access to care for rural and remote communities. However, there is mixed evidence for these interventions, particularly related to how they are received and perceived by health providers and by patients. Health technologies do not always adequately meet the needs of patients or providers. To examine this, a broad-based scoping review was conducted to provide an overview of patient and provider perspectives of eHealth initiatives in rural Rural and Remote Health rrh.org.au
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.