In this study, ZnO/Ag nanocomposites were synthesized using a facile chemical route involving metallic precursors of zinc acetate dehydrate and silver acetate, and dissolving the two metallic precursors in EtOH. The final concentration of the solution was 0.4 M. The different nanocomposites were synthesized using different atomic percentages of silver to compare the amount of silver nanoparticles with the bactericidal power of the nanocomposites. They were prepared at concentrations of 0, 1, 3, 5, 7, and 10 at%. The as-prepared nanocomposites were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) to study their structural and morphological properties. SEM showed that there is a clear effect of Ag on the size of the ZnO particles, since when silver percentages of 1 at% are included, the grain size obtained is much smaller than that of the ZnO synthesis. The effect is maintained for 3, 5, 7, and 10 at% silver. Transmission electron microscopy (TEM) compositional mapping confirms the presence of spherical nanoparticles in the synthesized samples. The size of the nanoparticles ranges from about 10 to about 30 nm. In addition, UV-Vis and Raman spectroscopy were performed to obtain structural details. The different samples show an increase in the absorption in the visible range due to the incorporation of the silver NPs. Measurement of the antimicrobial activity was tested against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) It is shown that zinc oxide has bactericidal power for these two groups of bacteria and also that when it is used together with silver NP, this effect improves, eliminating more than 90% of inoculated bacteria.
Doped ZnO are among the most attractive transparent conductive oxides for solar cells because they are relatively cheap, can be textured for light trapping, and readily produced for large-scale coatings. Here, we focus on the development of alternative Na and K-doped ZnO prepared by an easy low-cost spray pyrolysis method for conducting oxide application. To enhance the electrical properties of zinc oxide, alkali-doped Zn1−x MxO (x = 0.03) solid solutions were investigated. The resulting layers crystallize in a single hexagonal phase of wurtzite structure with preferred c-axis orientation along a (002) crystal plane. Dense, well attached to the substrate, homogeneous and highly transparent layers were obtained with great optical transmittance higher than 80%. The optical energy band gap of doped ZnO films increase from 3.27 to 3.29 eV by doping with Na and K, respectively. The electrical resistivity of the undoped ZnO could be decreased from 1.03 × 10−1 Ω.cm to 5.64 × 10−2 Ω.cm (K-doped) and 3.18 × 10−2 (Na-doped), respectively. Lastly, the carrier concentrations increased from 5.17 × 1017 (undoped ZnO) to 1 × 1018 (doped ZnO).
Because of the increasing demand for photovoltaic energy and the generation of end-of-life photovoltaic waste forecast, the feasibility to produce glass substrates for photovoltaic application by recycling photovoltaic glass waste (PVWG) material was analyzed. PVWG was recovered from photovoltaic house roof panels for developing windows glass substrates; PVWG was used as the main material mixed with other industrial waste materials (wSG). The glass was casted by air quenching, annealed, and polished to obtain transparent substrates samples. Fluorine-doped tin oxide (FTO) was deposited as back contact on the glass substrates by spray pyrolysis. The chemical composition of the glass materials was evaluated by X-ray fluorescence (XRF), the thermal stability was measured by differential thermal analysis (DTA) and the transmittance was determined by UV-VIS spectroscopy. The surface of the glass substrates and the deposited FTO were observed by scanning electron microscopy (SEM), the amorphous or crystalline state of the specimens were determined by X-ray diffraction (XRD) and the sheet resistance was evaluated by the four-point probe method. The sheet resistance of the deposited FTO on the wSG substrate was 7.84 ± 3.11 Ω/□, lower than that deposited on commercial soda-lime glass (8.48 ± 3.67 Ω/□), meaning that this material could present improved conduction of the produced electrons by the photovoltaic effect. This process may represent an alternative to produce glass substrates from waste materials that could be destined for photovoltaic applications, especially the production of ecological photovoltaic windows.
ZnO thin films with oxygen vacancies and doped with Al, Ga, and In (Zn1-xMxO1−y (x = 0.03)) have been successfully deposited on soda-lime glass substrates using a simple soft chemical method. The crystalline structure shows a single hexagonal phase of wurtzite with preferred crystal growth along the 002 plane. The surface morphology, characterized by SEM, revealed that the grain shape varies depending on the dopant agent used. Optical measurements displayed an increase in the bandgap values for doped films from 3.29 for ZnO to 3.35, 3.32, and 3.36 for Al, Ga, and In doped films, respectively, and an average transmittance superior to 90% in some cases (in the range between 400 and 800 nm). The electrical response of the films was evaluated with a four-point probe being 229.69, 385.71, and 146.94 Ω/sq for aluminium, gallium, and indium doped films, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.