ABSTRACT:The common hippopotamus (Hippopotamus amphibius L.) is part of the animal species endangered because of multiple human pressures. Monitoring of species for conservation is then essential, and the development of census protocols has to be chased. UAV technology is considering as one of the new perspectives for wildlife survey. Indeed, this technique has many advantages but its main drawback is the generation of a huge amount of data to handle. This study aims at developing an algorithm for automatic count of hippos, by exploiting thermal infrared aerial images acquired from UAV. This attempt is the first known for automatic detection of this species. Images taken at several flight heights can be used as inputs of the algorithm, ranging from 38 to 155 meters above ground level. A Graphical User Interface has been created in order to facilitate the use of the application. Three categories of animals have been defined following their position in water. The mean error of automatic counts compared with manual delineations is +2.3% and shows that the estimation is unbiased. Those results show great perspectives for the use of the algorithm in populations monitoring after some technical improvements and the elaboration of statistically robust inventories protocols.
The RADseq technology allows researchers to efficiently develop thousands of polymorphic loci across multiple individuals with little or no prior information on the genome. However, many questions remain about the biases inherent to this technology. Notably, sequence misalignments arising from paralogy may affect the development of single nucleotide polymorphism (SNP) markers and the estimation of genetic diversity. We evaluated the impact of putative paralog loci on genetic diversity estimation during the development of SNPs from a RADseq dataset for the nonmodel tree species Robinia pseudoacacia L. We sequenced nine genotypes and analyzed the frequency of putative paralogous RAD loci as a function of both the depth of coverage and the mismatch threshold allowed between loci. Putative paralogy was detected in a very variable number of loci, from 1% to more than 20%, with the depth of coverage having a major influence on the result. Putative paralogy artificially increased the observed degree of polymorphism and resulting estimates of diversity. The choice of the depth of coverage also affected diversity estimation and SNP validation: A low threshold decreased the chances of detecting minor alleles while a high threshold increased allelic dropout. SNP validation was better for the low threshold (4×) than for the high threshold (18×) we tested. Using the strategy developed here, we were able to validate more than 80% of the SNPs tested by means of individual genotyping, resulting in a readily usable set of 330 SNPs, suitable for use in population genetics applications.
IntroductionThe common hippopotamus Hippopotamus amphibius L. is a vulnerable species that requires efficient methods to monitor its populations for conservation purposes. Rapid evolution of civil drones provides new opportunities but survey protocols still need development. This study aims to determine the optimal flight parameters for accurate population estimates. A second objective is to evaluate the effects of three environmental factors: wind speed, sun reflection and cloud cover.MethodWe estimated the population of two main hippo schools (Dungu and Wilibadi II) located in Garamba National Park in Democratic republic of Congo. Eight observers reviewed 252 photos taken over the Dungu school, representing a total of 2016 experimental units. A detection rate and a level of certainty were associated with each experimental unit, and five parameters were related to each count: flight height, three environmental parameters (sun reflection on water surface, cloud cover, and wind speed), and observers’ experience.ResultsFlight height reduced the observers’ confidence in their detection ability, rather than the detection itself. For accurate counts of large groups an average height of 150 m was shown to be a good compromise between animal detection without zooming in and the area covered in one frame. Wind speed had little influence on the counts, but it affected the performance of the UAS. Sun reflection reduced the detection rate of hippos and increased level of certainty, while cloud cover reduced detection rates slightly. Therefore, we recommend flying when the sun is still low on the horizon and when there is little cloud, or when cloud cover is light and even. This last point reinforces our recommendation for flights early in the day. The counts also showed large differences between groups of inexperienced and experienced observers. Experienced observers achieved better detection rates and were generally more confident in their detection. Experienced observers detected 86.5% of the hippos on average (confidence interval = ±0.76%). When applied to data from the second site, the detection was 84.3% (confidence interval = ±1.84%). Two correction factors were then calculated, as the inverse of the detection rate, based on the estimated number of hippos present during one flight (Factor 1) or in the general population respectively (Factor 2). Factor 2 especially was consistent with previous studies using traditional aerial counts (1.22 vs 1.25). Factor 2 was found to be appropriate for use by experienced observers. These results confirm the use of correction factor 2 for hippo surveys, regardless of the study site, as it accounts for hippo behavior. Optimum counting and cost efficiency were achieved with two trained observers counting 7 pictures.ConclusionThis study is a promising approach for routine surveys of the hippopotamus which is a species usually ignored in wildlife counts. Drone technology is expected to improve rapidly; therefore UAS could become a very useful and affordable survey tool for other species ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.