Visual review of intracranial electroencephalography (iEEG) is often an essential component for defining the zone of resection for epilepsy surgery. Unsupervised approaches using machine and deep learning are being employed to identify seizure onset zones (SOZs). This prompts a more comprehensive understanding of the reliability of visual review as a reference standard. We sought to summarize existing evidence on the reliability of visual review of iEEG in defining the SOZ for patients undergoing surgical workup and understand its implications for algorithm accuracy for SOZ prediction. We performed a systematic literature review on the reliability of determining the SOZ by visual inspection of iEEG in accordance with best practices. Searches included MEDLINE, Embase, Cochrane Library, and Web of Science on May 8, 2022. We included studies with a quantitative reliability assessment within or between observers. Risk of bias assessment was performed with QUADAS‐2. A model was developed to estimate the effect of Cohen kappa on the maximum possible accuracy for any algorithm detecting the SOZ. Two thousand three hundred thirty‐eight articles were identified and evaluated, of which one met inclusion criteria. This study assessed reliability between two reviewers for 10 patients with temporal lobe epilepsy and found a kappa of .80. These limited data were used to model the maximum accuracy of automated methods. For a hypothetical algorithm that is 100% accurate to the ground truth, the maximum accuracy modeled with a Cohen kappa of .8 ranged from .60 to .85 (F‐2). The reliability of reviewing iEEG to localize the SOZ has been evaluated only in a small sample of patients with methodologic limitations. The ability of any algorithm to estimate the SOZ is notably limited by the reliability of iEEG interpretation. We acknowledge practical limitations of rigorous reliability analysis, and we propose design characteristics and study questions to further investigate reliability.
The coronavirus disease 2019 (COVID-19) pandemic has claimed nearly 5.5 million lives worldwide. Adenovirus-based vaccines are safe and effective, but they are rarely associated with vaccine-induced thrombosis and thrombocytopenia (VITT) as well as cerebral venous sinus thrombosis (CVST). We conducted a systematic literature search of intracerebral hemorrhage (ICH) secondary to CVST associated with VITT from the Ad26.COV2.S vaccine, and we present the first case of this pathology in the reviewed literature of a patient who required neurosurgical decompression. The systematic literature review was completed on December 19, 2021, by searching PubMed and Ovid for articles with primary data on CVST associated with VITT following the Ad26.COV2.S vaccine. We also specifically searched for cases that required neurosurgical intervention. Articles were independently screened by two authors, and both secondary and tertiary searches were done as well. Descriptive statistics were collected and presented in table form. Nine studies were identified that met inclusion criteria. There were no cases identified of patients who underwent neurosurgical decompression after developing this pathology. We thus present the first case in the reviewed literature of a patient who developed ICH after receiving the Ad26.COV2.S vaccine and underwent decompressive hemicraniectomy. Despite severe thrombocytopenia and prolonged intensive care, the patient was discharged to neurorehabilitation. There is a much greater risk of CVST and ICH during COVID-19 infections than from the vaccines. However, as booster vaccines are approved and widely distributed, it is critical to make prompt, accurate diagnoses of this vaccine-related complication and consider neurosurgical decompression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.