Avoiding emergency hospital admission (EA) is advantageous to individual health and the healthcare system. We develop a statistical model estimating risk of EA for most of the Scottish population (>4.8M individuals) using electronic health records, such as hospital episodes and prescribing activity. We demonstrate good predictive accuracy (AUROC 0.80), calibration and temporal stability. We find strong prediction of respiratory and metabolic EA, show a substantial risk contribution from socioeconomic decile, and highlight an important problem in model updating. Our work constitutes a rare example of a population-scale machine learning score to be deployed in a healthcare setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.