Herein, electrochemical annulations involving mediators and mediator-free conditions have been discussed. Also, the use of sacrificial electrodes has been explored.
The ionic liquid 1-butyl-3-methylimidazolium methylselenite, [bmim][SeO2(OCH3)], was successfully used as solvent in the catalyst-free preparation of 3-arylselenylindoles by the reaction of indole with ArSeCl at room temperature. The products were obtained selectively in good yields without the need of any additive and the solvent was easily reused for several cycles with good results.
Achieving advances in the development of clean and efficient synthetic routes has become an important aim in research. In recent years, the search for new sustainable methodologies, notably environmentally benign synthetic procedures, has gained the attention of the scientific community. Electrosynthesis is a tool that has been extensively studied due to its potential application in chemical transformations and it adheres to the principles of green chemistry. Organochalogen compounds form an important class of molecules, since many of them have properties that can be applied in medicine and materials science. Thus, herein we provide a comprehensive and updated overview covering recent advances in the electrochemical C(sp2)−H bond chalcogenation of activated arenes and heterocycles as well as electrochemical chalcogenation through oxidative cross‐coupling reactions and chalcogen‐functionalization of alkenes/alkynes. The scope, limitations, and mechanisms are described and discussed, detailing the fundamental aspects and benefits of electrochemistry for the chalcogenation of organic compounds. The content of this Minireview demonstrates that it is possible to provide new synthetic routes and to improve the existing methodologies, to obtain processes more in line with current environmental protection aims. The reader will also find a discussion on the fundamental aspects and benefits of applying electrosynthesis to the assembly and operation of an electrolytic cell.
Herein, we report an electrochemical oxidative C(sp2)–H selenylation of activated arenes. The reaction proceeds in an undivided electrochemical cell at Pt‐electrodes in the presence of KI as the supporting electrolyte, which could suffer oxidation at the anode. Using this benign, atom‐economic protocol, the desired selenylated products were obtained regioselectively in good to excellent yields by using a half molar equiv. of the diselenides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.