A brain tumor is one of the foremost reasons for the rise in mortality among children and adults. A brain tumor is a mass of tissue that propagates out of control of the normal forces that regulate growth inside the brain. A brain tumor appears when one type of cell changes from its normal characteristics and grows and multiplies abnormally. The unusual growth of cells within the brain or inside the skull, which can be cancerous or non-cancerous has been the reason for the death of adults in developed countries and children in under developing countries like Ethiopia. The studies have shown that the region growing algorithm initializes the seed point either manually or semi-manually which as a result affects the segmentation result. However, in this paper, we proposed an enhanced region-growing algorithm for the automatic seed point initialization. The proposed approach’s performance was compared with the state-of-the-art deep learning algorithms using the common dataset, BRATS2015. In the proposed approach, we applied a thresholding technique tostrip the skull from each input brain image. After the skull is stripped the brain image is divided into 8 blocks. Then, for each block, we computed the mean intensities and from which the five blocks with maximum mean intensities were selected out of the eight blocks. Next, the five maximum mean intensities were used as a seed point for the region growing algorithm separately and obtained five different regions of interest (ROIs) for each skull stripped input brain image. The five ROIs generated using the proposed approach were evaluated using dice similarity score (DSS), intersection over union (IoU), and accuracy (Acc) against the ground truth (GT), and the best region of interestis selected as a final ROI. Finally, the final ROI was compared with different state-of-the-art deep learning algorithms and region-based segmentation algorithms in terms of DSS. Our proposed approach was validated in three different experimental setups. In the first experimental setup where15 randomly selected brain images were used for testing and achieved a DSS value of 0.89. In the second and third experimental setups, the proposed approach scored a DSS value of 0.90 and 0.80 for 12 randomly selected and 800 brain images respectively. The average DSS value for the threeexperimental setups was 0.86.
Deep learning algorithms have become the first choice as an approach to medical image analysis, face recognition, and emotion recognition. In this survey, several deep-learning-based approaches applied to breast cancer, cervical cancer, brain tumor, colon and lung cancers are studied and reviewed. Deep learning has been applied in almost all of the imaging modalities used for cervical and breast cancers and MRIs for the brain tumor. The result of the review process indicated that deep learning methods have achieved state-of-the-art in tumor detection, segmentation, feature extraction and classification. As presented in this paper, the deep learning approaches were used in three different modes that include training from scratch, transfer learning through freezing some layers of the deep learning network and modifying the architecture to reduce the number of parameters existing in the network. Moreover, the application of deep learning to imaging devices for the detection of various cancer cases has been studied by researchers affiliated to academic and medical institutes in economically developed countries; while, the study has not had much attention in Africa despite the dramatic soar of cancer risks in the continent.
Segmentation is the act of partitioning an image into different regions by creating boundaries between regions. k-means image segmentation is the simplest prevalent approach. However, the segmentation quality is contingent on the initial parameters (the cluster centers and their number). In this paper, a convolution-based modified adaptive k-means (MAKM) approach is proposed and evaluated using images collected from different sources (MATLAB, Berkeley image database, VOC2012, BGH, MIAS, and MRI). The evaluation shows that the proposed algorithm is superior to k-means++, fuzzy c-means, histogrambased k-means, and subtractive k-means algorithms in terms of image segmentation quality (Q-value), computational cost, and RMSE. The proposed algorithm was also compared to state-of-the-art learning-based methods in terms of IoU and MIoU; it achieved a higher MIoU value.
Breast cancer occurs as a result of erratic growth and proliferation cells that originate in the breast. In this paper, the classifiers were used to identify the abnormalities on mammograms to get the region of interest (ROI). Before classifier based segmentation, noise, pectoral muscles, and tags were removed for a successful segmentation process. Then the proposed approach extracted the brightest regions using modified k-means. From the extracted brightest regions, shape and texture features were extracted and given to classifiers (KNN and SVM) and marked as ROI only those non-overlapping abnormal regions. The ROIs obtained using the proposed classifier-based segmentation algorithm was compared with the ground truth annotated by the radiologists. The datasets used to evaluate the performance of the proposed algorithm was public (MIAS) and local datasets (BGH and DADC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.