A small library of 17 organoruthenium compounds with the general formula [Ru (fcl)(chel)(L)] (in which fcl=face capping ligand, chel=chelating bidentate ligand, and L=monodentate ligand) were screened for inhibitory activity against cholinesterases and glutathione-S-transferases of human and animal origins. Compounds were selected to include different chelating ligands (i.e., N,N-, N,O-, O,O-, S,O-) and monodentate ligands that can modulate the aquation rate of the metal species. Compounds with a labile ruthenium chloride bond that provided rapid aquation were found to inhibit both sets of enzymes in reversible competitive modes and at pharmaceutically relevant concentrations. When applied at concentrations that completely abolish the activity of human acetylcholinesterase, the lead compound [(η -p-cymene)Ru(pyrithionato)Cl] (C1 a) showed no undesirable physiological responses on the neuromuscular system. Finally, C1 a was not cytotoxic against non-transformed cells at pharmaceutically relevant concentrations.
The increasing number of Alzheimer’s disease (AD) cases requires the development of new improved drug candidates, possessing the ability of more efficient treatment as well as less unwanted side effects. Cholinesterase enzymes are highly associated with the development of AD and thus represent important druggable targets. Therefore, we have synthesized eight organoruthenium(II) chlorido complexes 1a–h with pyrithione-type ligands (pyrithione = 1-hydroxypyridine-2(1H)-thione, a), bearing either pyrithione a, its methyl (b-e) or bicyclic aromatic analogues (f–h) and tested them for their inhibition towards electric eel acetylcholinesterase (eeAChE) and horse serum butyrylcholinesterase (hsBuChE). The experimental results have shown that the novel complex 1g with the ligand 1-hydroxyquinoline-2-(1H)-thione (g) improves the inhibition towards eeAChE (IC50 = 4.9 μM) and even more potently towards hsBuChE (IC50 = 0.2 μM) in comparison with the referenced 1a. Moreover, computational studies on Torpedo californica AChE have supported the experimental outcomes for 1g, possessing the lowest energy value among all tested complexes and have also predicted several interactions of 1g with the target protein. Consequently, we have shown that the aromatic ring extension of the ligand a, though only at the appropriate position, is a viable strategy to enhance the activity against cholinesterases.
The Cover Feature shows an organoruthenium‐pyrithione complex that inhibits cholinesterases and glutathione‐S‐transferases at pharmaceutically relevant concentrations while showing no undesirable physiological responses on the neuromuscular system, as well as no toxicity against nontransformed cells. Combining these results with our previous study (Kljun et al. Dalton Trans. 2016, 45, 11791–11800) which showed the ability of this compound to inhibit enzymes involved in hormone‐dependent breast cancer, as well as high toxicity on the MCF‐7 breast cancer cell line, this compound is an interesting candidate as a multitarget drug for the treatment of cancer or Alzheimer′s disease. More information can be found in the Full Paper by Robert Frangež, Kristina Sepčić, Iztok Turel et al. on page 2166 in Issue 20, 2018 (DOI: 10.1002/cmdc.201800432).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.