Radiogenomics aims to predict genetic markers based on imaging features. The critical importance of molecular markers in the diagnosis and management of intracranial gliomas has led to a rapid growth in radiogenomics research, with progressively increasing complexity. Despite the advances in the techniques being examined, there has been little translation into the clinical domain. This has resulted in a growing disconnect between cutting-edge research and assimilation into clinical practice, though the fundamental goal is for these techniques to improve patient care. The goal of this review, therefore, is to discuss possible clinical scenarios in which the addition of radiogenomics may aid patient management. This includes facilitating patient counseling, determining optimal patient management when complete molecular characterization is not possible, reclassifying tumors, and overcoming some of the limitations of histologic assessment. The review also discusses considerations for selecting relevant radiogenomic features based on the clinical setting.
IDH-wild type (wt) glioblastoma (GB) accounts for approximately 90% of all GB and has a poor outcome. Surgery and adjuvant therapy with temozolomide and radiotherapy is the main therapeutic approach. Unfortunately, after relapse and progression, which occurs in most cases, there are very limited therapeutic options available. BRAF which plays a role in the oncogenesis of several malignant tumors, is also involved in a small proportion of IDH-wt GB. Previous successes with anti-B-Raf targeted therapy in tumors with V600E BRAF mutation like melanoma, combined with the poor prognosis and paucity of therapeutic options for GB patients is leading to a growing interest in the potential efficacy of this approach. This review is thus focused on dissecting the state of the art and future perspectives on BRAF pathway inhibition in IDH-wt GB. Overall, clinical efficacy is mostly described within case reports and umbrella trials, with promising but still insufficient results to draw more definitive conclusions. Further studies are needed to better define the molecular and phenotypic features that predict for a favorable response to treatment. In addition, limitations of B-Raf-inhibitors, in monotherapy or in combination with other therapeutic partners, to penetrate the blood-brain barrier and the development of acquired resistance mechanisms responsible for tumor progression need to be addressed.
Merkel cell carcinoma is a rare neuroendocrine tumor of subspecialized dermal mechanoreceptors, associated with immunosuppression. The usual ophthalmic presentation is an eyelid lesion. The authors present a case of biopsy-proven orbital metastatic Merkel cell carcinoma in the absence of any eyelid lesion, in an immunosuppressed patient with a history of multiple cancers. There are to the authors' knowledge only 2 other case reports of presumed metastatic Merkel cell carcinoma to the orbit, though neither were biopsied. Despite its rarity, metastatic Merkel cell carcinoma should be included in the differential of a metastatic orbital lesion, in the patient with a known or suspected cutaneous primary. The patient has had an excellent response to combined radiotherapy and programmed death-1 inhibitor pembrolizumab, and this case highlights the potential benefit of an exciting new biologic therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.