In order to understand the hydrological impacts of the nature-based solutions in the Cantareira Water Supply System, this study evaluates six different land cover and land use change scenarios. The first and second consider the restoration of native vegetation in riparian areas, the third prioritizes restoration sites using biophysical characteristics (optimized restoration scenario derived from Resource Investment Optimization System—RIOS), the fourth considers best management practices and the fifth and sixth are hypothetical extreme scenarios converting all pasture to forest and vice versa. Two hydrological models were developed to represent the distributions of water and yields in the study watershed: HEC-HMS and SWAT. Simulation results indicate that when nature-based solutions are implemented, surface runoff is reduced and ambient storage increases during the rainy season (December–March); while the overall flow increases during the dry season (June–September). The combination of specific hydrologic components of RIOS-customized intervention scenario simulation outputs—namely surface flows and groundwater contribution to stream flows—indicate on average 33% increase in the overall water yield, or 206 hm3/year, across the study watershed when comparing against the baseline conditions. In the same modeling scenario, the water storage in the sub-watersheds adjacent to the reservoirs showed an increase of 58% (or 341 hm3/year). The results indicate that adopting NbS in the source watershed can mitigate the impacts of extreme drought conditions and contribute toward building long-term water security.
This study describes a collaborative modeling process deployed at the Cantareira Water Supply System (CWSS) in São Paulo City Metropolitan Area, Brazil. The CWSS faces challenges for meeting the increasing water demand, while land-use and climate change and their combined effect on its water cycle and balance have created a complex water resources management problem. Through a stakeholder engagement process—involving scientists and policymakers, the water utility company, and state administration—environmental simulation models were developed to elicit and represent multiple environmental, economic, and policy perspectives, developing a mutual language to communicate and establish common goals of water resources management. Study outputs include estimation of biophysical and economic benefits associated with prioritized native vegetation restoration activities in the source watersheds. These outputs are deployed in support of landscape planning and the decision process integrating multiple stakeholder perspectives in São Paulo state administration, the water utility company, and municipalities.
Despite its rich water resources, Brazil is increasingly facing extreme hydrologic events such as droughts and floods. The Sao Paulo Cantareira water supply system (CWSS) offers an opportunity to examine the potential economic benefits of nature-based solutions (NbS) to improve water security and reduce the economic cost of drought. This study explores the potential benefits under a counterfactual NbS land-use scenario compared to actual land use and assesses the economic viability of NbS investments in the CWSS. Specifically, we estimate the economic cost of the 2014–2015 drought in Sao Paulo state for the industrial and water sectors served by the CWSS. We estimate the potential avoided costs under the NbS scenario and conduct a cost–benefit analysis of the NbS scenario investments, including both water supply and carbon sequestration benefits. We estimate that the economic losses of this single drought event totaled BRL 1.6 billion. If NbS had been implemented, this cost could have been reduced by 28%. A cost–benefit analysis that includes only the water supply or both the water supply and carbon sequestration benefits indicates that the NbS scenario has a positive net present value of BRL 144 million and BRL 632 million, respectively. Thus, our results highlight the economic viability of the hypothetical NbS investment in mitigating extreme climatic events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.