The aim of this study was to analyze fatigue occurrence during the repetition of rugby union specific tasks. Eight high-level rugby players (age 23 ± 1.1 y; body mass 90.9 ± 9.8 kg; height 1.83 ± 7.3m) performed three sessions, in a random order, to investigate specific rugby union tasks (Scrum, Maul and Running sprints). Each session consisted in 5 repetitions of 5-s maximal exertion interspersed with 20-s passive recoveries. The scrums were performed into a fixed yoke, while the mauls were realized into a moving yoke. Forces were recorded during the scrums and speeds were monitored during both mauls and sprints. Performance decrease was calculated and complemented by EMG recordings of the vastus lateralis, blood lactate accumulation and rating of perceived exertion (RPE) were also obtained. The repetition of Scrums, Mauls and Sprints induced a decrease in the performance of respectively 23.3 ± 5.3%, 12.6 ± 2.5 % and 7.3 ± 0.9 %. The EMG level decreased only after Scrums and Mauls (respectively 20.8 ± 3.2 % and 12.6 ± 2.5 %; p < 0.0001) while blood lactate accumulation was significantly higher for Sprints (9.2 ± 1.1 mmol. L−1; p = 0.0061) and Maul (8.8 ± 0.8 mmol. L−1; p = 0.0028) compared to Scrum (2.9 ± 1.2 mmol. L−1). Average RPE was higher during the repetition of Scrums (7.8 ± 0.6) compared to Mauls (7.2 ± 0.6; p = 0.0086) and Sprints (7.1 ± 0.5; p = 0.001). The repetition of scrums led to a greater fatigue linked to activation perturbation while during sprints the fatigue was lower and associated with a great metabolic activity. The mauling task showed intermediate characteristics: the fatigue was moderate and both EMG losses and lactate accumulation were substantial. This confirms that conditioning, testing and substitutions should differ according to the players' position in modern rugby.
Rapid force production is critical to improve performance and prevent injuries. However, changes in rate of force/torque development caused by the repetition of maximal contractions have received little attention. The aim of this study was to determine the relative influence of rate of torque development (RTD) and peak torque (Tpeak) on the overall performance (i.e. mean torque, Tmean) decrease during repeated maximal contractions and to investigate the contribution of contractile and neural mechanisms to the alteration of the various mechanical variables. Eleven well-trained men performed 20 sets of 6-s isokinetic maximal knee extensions at 240°·s-1, beginning every 30 seconds. RTD, Tpeak and Tmean as well as the Rate of EMG Rise (RER), peak EMG (EMGpeak) and mean EMG (EMGmean) of the vastus lateralis were monitored for each contraction. A wavelet transform was also performed on raw EMG signal for instant mean frequency (ifmean) calculation. A neuromuscular testing procedure was carried out before and immediately after the fatiguing protocol including evoked RTD (eRTD) and maximal evoked torque (eTpeak) induced by high frequency doublet (100 Hz). Tmean decrease was correlated to RTD and Tpeak decrease (R²=0.62; p<0.001; respectively β=0.62 and β=0.19). RER, eRTD and initial ifmean (0-225 ms) decreased after 20 sets (respectively -21.1±14.1, -25±13%, and ~20%). RTD decrease was correlated to RER decrease (R²=0.36; p<0.05). The eTpeak decreased significantly after 20 sets (24±5%; p<0.05) contrary to EMGpeak (-3.2±19.5 %; p=0.71). Our results show that reductions of RTD explained part of the alterations of the overall performance during repeated moderate velocity maximal exercise. The reductions of RTD were associated to an impairment of the ability of the central nervous system to maximally activate the muscle in the first milliseconds of the contraction.
The study investigated different electromyographic (EMG) normalisation methods for upper-limb muscles. This assessment aimed at comparing the EMG amplitude and the reliability of EMG values obtained with each method. Eighteen male tennis players completed isometric maximal voluntary contractions and dynamic strength exercises (push-ups and chin-ups) on three separate test sessions over at least 7 days. Surface EMG activity of nine upper body muscles was recorded. For each muscle, an analysis of variance for repeated measures was used to compare maximal EMG amplitudes between test conditions. The intra-class correlation coefficient, the coefficient of variation and the standard error of measurement were calculated to determine the EMG reliability of each condition. On the basis of a compromise between maximal EMG amplitude and high reliability, the chin-ups appeared to be the optimal normalisation method for M. latissimus dorsi, M. posterior deltoid, M. biceps brachii, M. flexor carpi radialis and M. extensor carpi radialis. The push-ups seemed relevant to normalise M. anterior deltoid and M. triceps brachii activity, while isometric maximal voluntary contraction remained the most appropriate method for M. pectoralis major and M. middle deltoid. Thus, original methods are proposed to normalise EMG signal of upper-limb muscles.
This study aimed to compare the magnitude and etiology of neuromuscular fatigue during maximal repeated contractions performed in two contraction modes (concentric vs isometric) and at two contraction velocities (30/s vs 240°/s). Eleven lower limb-trained males performed 20 sets of maximal contractions at three different angular velocities: 0°/s (KE0), 30/s (KE30), and 240°/s (KE240). Cumulated work, number of contraction, duty cycle, and contraction time were controlled. Torque, superimposed and resting twitches, as well as gas exchange, were analyzed. Increasing contraction velocity was associated with greater maximal voluntary torque loss (KE0: -9.8 ± 3.9%; KE30: -16.4 ± 8.5%; KE240: -32.6 ± 6.3%; P < 0.05). Interestingly, the torque decrease was similar for a given cumulated work. Compared with KE0, KE240 generated a greater evoked torque loss (Db100: -24.3 ± 5.3% vs -5.9 ± 6.9%; P < 0.001), a higher O2 consumption (23.7 ± 6.4 mL/min/kg vs 15.7 ± 3.8 mL/min/kg; P < 0.001), but a lower voluntary activation (VA) loss (-4.3 ± 1.6% vs -11.2 ± 4.9%; P < 0.001). The neuromuscular perturbations were intermediate for KE30 (Db100: -10.0 ± 6.8%; VA: -7.2 ± 2.8%). Although the amount of mechanical work cumulated strongly determined the magnitude of torque decrease, the contraction velocity and mode influenced the origin of the neuromuscular fatigue. The metabolic stress and peripheral fatigue increased but reduction of VA is attenuated when the contraction velocity increased from 0°/s to 240°/s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.